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ABSTRACT Next-generation sequencing technologies have enabled many advances
across diverse areas of biology, with many benefiting from increased sample size.
Although the cost of running next-generation sequencing instruments has dropped
substantially over time, the cost of sample preparation methods has lagged behind.
To counter this, researchers have adapted library miniaturization protocols and large
sample pools to maximize the number of samples that can be prepared by a certain
amount of reagents and sequenced in a single run. However, due to high variability
of sample quality, over and underrepresentation of samples in a sequencing run has
become a major issue in high-throughput sequencing. This leads to misinterpretation
of results due to increased noise, and additional time and cost rerunning underrepresen-
ted samples. To overcome this problem, we present a normalization method that uses
shallow iSeq sequencing to accurately inform pooling volumes based on read distribu-
tion. This method is superior to the widely used fluorometry methods, which cannot
specifically target adapter-ligated molecules that contribute to sequencing output. Our
normalization method not only quantifies adapter-ligated molecules but also allows
normalization of feature space; for example, we can normalize to reads of interest such
as non-ribosomal reads. As a result, this normalization method improves the efficiency of
high-throughput next-generation sequencing by reducing noise and producing higher
average reads per sample with more even sequencing depth.

IMPORTANCE High-throughput next generation sequencing (NGS) has significantly
contributed to the field of genomics; however, further improvements can maximize the
potential of this important tool. Uneven sequencing of samples in a multiplexed run is a
common issue that leads to unexpected extra costs or low-quality data. To mitigate this
problem, we introduce a normalization method based on read counts rather than library
concentration. This method allows for an even distribution of features of interest across
samples, improving the statistical power of data sets and preventing the financial loss
associated with resequencing libraries. This method optimizes NGS, which already has
huge importance across many areas of biology.

KEYWORDS metagenomics, large-scale studies, NGS normalization, automation,
multiplexing, quantification, high-throughput sequencing

M etagenomic next-generation sequencing (metagenomic-NGS) is an increasingly
useful tool in the field of biology and clinical medicine, allowing researchers to

comprehensively sample all genes in all organisms present in a given complex sample.
This tool enables microbiologists to evaluate bacterial diversity and detect the abun-
dance of microbes in various environments. Importantly, it provides a means to study
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unculturable microorganisms that are otherwise difficult or impossible to analyze. This
has proven valuable to a whole range of scientific studies, such as microbiome
characterization (1–3) pathogen detection (4) forensics (5), and environmental monitor-
ing (6).

With advances in sequencing technology, the high number of reads provided by
a single run on high-throughput sequencers such as the HiSeq or NovaSeq is driving
the use of larger, multiplexed sample pools to lower sequencing costs (7–9). However,
uneven library concentrations from different types and qualities of samples can lead
to inconsistencies in data quality (10). Libraries with low concentration may be under-
represented on the flow cell, while those with high concentration are likely to be
overrepresented. Overrepresentation can waste the finite data capacity of a sequencing
run, whereas underrepresentation can lead to shallow read depth, unreliable data, and
the squandering of valuable library material. Both cases lead to additional costs and
time re-preparing libraries, which remain disproportionately high compared to per-base
sequencing expenses (11). Additionally, decisions based on inaccurate or incomplete
data could lead clinicians or researchers to miss critical information, making the choice of
the right sequencing approach essential.

Normalization aims to mitigate these challenges ensuring every library is represen-
ted equally and sequenced to sufficient depths. To inform normalization, there are
several options for quantitating library preps, which vary in ease and accuracy (10,
12). Spectrophotometry-based methods such as fluorometry, which are the quickest
and most convenient, tend to be inaccurate (10). The accuracy of quantitation and
subsequent normalization depends significantly on the quantification method’s ability to
detect adaptor-ligated double-stranded DNA molecules with specificity, which are the
only molecules that can contribute to sequencing output. Since fluorometry cannot
specifically target useful adaptor-ligated molecules, this is believed to result in the
overestimation of the sequencing-competent library concentration. However, methods
that can distinguish between adapter-ligated molecules, like quantitative PCR (qPCR), are
time-consuming as they require knowing the average fragment size in each library for
dilution calculations. To overcome these difficulties of metagenomic-NGS normalization,
we optimized a method of normalization for hundreds of multiplexed samples that is
based on read counts from a low-cost and rapid iSeq run (13).

We prepared shotgun metagenomic libraries from 352 samples plus 32 negative
control extraction blanks according to our previously established protocol (14) using the
HyperPlus library prep kit (KAPA Biosciences) (Text S1). As shown in Fig. S1, these libraries
were quantified via the PicoGreen fluorescence assay (ThermoFisher, Inc) and pooled
to approximately equal molar fractions using the Echo 550 robot. The resulting pool,
representing 384 libraries, was sequenced on Illumina’s iSeq, yielding a total combined
depth of approximately 5 million paired-end reads. The read distribution of the 352
samples resulted in a normal distribution with each library occupying a median of 0.24%
±0.2% of the total reads per sample and a coefficient of variation of 0.72 (Fig. 1A). We
created another pool where the pooled volume of each library was calculated based
on the read distributions from this iSeq run (ranging from 10 nL to 1,000 nL), enabling
normalization based on sequenced paired-end read counts (15). The iSeq normalized
pool was sequenced on Illumina’s iSeq to a total depth of approximately 5.7 million
paired-end reads. Sequencing results from the iSeq normalized pool yielded a median
library proportion of 0.3%±0.1% of the total reads per sample (in this case, ~16,000
± 5,700 reads per sample) and a coefficient of variation of 0.37 (Fig. 1A). The signifi-
cantly tighter standard deviation produced by this step demonstrates that hundreds
of libraries can be pooled quickly and within close range of each other using this
method. Despite over-penalizing some overrepresented samples, which caused some
samples to underachieve the median read count (Fig. S2 and S3), this is a significant
improvement in sequencing depth evenness across samples (Fig. 1B). Additionally, this
normalization method allows us to normalize feature counts across samples, instead of
raw read counts by changing the raw reads PFi terms in the numerator and denominator
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of the Reads%Index calculation (Fig. S1) for feature countsi terms. For example, we can
target reads of interest (features), such as non-ribosomal reads in metatranscriptomic
sequencing (Fig. 2) or reads aligning to a specific genome for bacterial isolate sequenc-
ing, and normalize their counts across samples. This further reduces the amount of
sequencing depth variation in the reads of interest for our downstream data analysis.

FIG 1 (A) Boxplots showing the distribution of proportions of total reads observed in samples normalized with Fluorescent Quantification and Read Count

normalization methods, respectively. Coefficient of variation for Fluorescent Quantification (pink/red) is 0.72. Coefficient of variation for Read Count (turquoise)

is 0.37. (B) Rarefaction curve demonstrating the higher sample retention when rarefying to the median number of reads per normalization method. Dotted lines

represent the median number of reads per sample for each method.
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The steps for preparing this additional sequencing pool include two fragment length
distribution analyses, size selection, and quantification. As these steps are also required
for preparing the final read count normalized pool, there are no additional capital costs,
other than the iSeq. Further, the consumable costs are low when working with pooled
samples (~$30 per pool). With personnel, it takes 1 technician approximately 6 h to
prepare each pool for sequencing. Furthermore, it takes ~19 h (15–20 min hands-on
time) and costs ~$500 to load and run an iSeq sequencer up to 8million paired-end
reads. These costs are negligible in comparison to resequencing libraries on a Novaseq
in order to make up for unsatisfactory normalization based on fluorescent quantification,
where a typical Novaseq S4 run can take up to 44 h and costs between $4,000–$5,000
per lane. Moreover, the iSeq platform requires low input for a successful run, with
a concentration of only 90 picomolar (pM) in 20 µL. This feature makes it feasible
to use this read count normalization method with samples that have limited genetic
material, such as skin swabs or other low biomass samples. QC steps, such as quantifica-
tion and size selection, are performed on pooled samples; therefore, these steps also
consume negligible amounts of each library. The deeper and more uniform sequencing
produced from normalization by read distribution leads to higher sample retention
when normalizing reads across samples with rarefaction and will allow for increased
statistical power when testing for biological signals in a data set (Fig. 1B). Overall, the
use of this normalization method will mitigate the risk of erroneous interpretation
of results, improve identification and characterization of pathogenic organisms and
microbial communities, and will also minimize the need to resequence libraries due to
underrepresentation, saving time, and resources.
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Supplemental Material

Figure S1 (mSystems00006-23-s0001.tif). Flowchart of experimental design. 1. KAPA
HyperPlus shotgun libraries are quantified using the PicoGreen fluorescence assay
(ThermoFisher, Inc) and pooled to approximately equimolar fractions. 2. Pool is
sequenced on Illumina's iSeq. 3. The resulting raw reads Passing Filter (PF) is
used to calculate a Loading Factor for each library, which is the ratio between
the index representing the highest proportion of the total reads PF and the
index of each library’s proportion of total reads PF (Illumina. [Internet]. 2019. Avail-
able from: https://www.illumina.com/content/dam/illumina-marketing/documents/sys-
tems/iseq/single-cell-library-qc-app-note-770-2019-029.PDF). This in turn scales the
fluorescent quantified pooled volumes to calculate new pooling volumes. The new
pooling volumes are clipped within a reasonable range for acoustic droplet ejection
(typically between the range of 10 nL and 1,000 nL, using the Labcyte Echo 550). 4.
Libraries are pooled using new pooling volumes. 5. The resulting read count normalized
pool is sequenced on illumina's iSeq. Created with BioRender.com.
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Figure S2 (mSystems00006-23-s0002.tif). Comparison of the top 5% of samples with
the least and most reads for each normalization method. Dotted line represents the
median percentage of total reads for both methods (Read Count normalized in turquoise
and Fluorescent Quantification normalized in pink/red). (A) Top 5% of samples with
the most amount of reads when Read Count normalization was applied. (B) Top 5% of
samples with the most amount of reads when Fluorescent Quantification normalization
was applied. (C) Top 5% of samples with the least amount of reads when Read Count
normalization was applied. (D) Top 5% of samples with the least amount of reads when
Fluorescent Quantification normalization was applied.
Figure S3 (mSystems00006-23-s0003.tif). Correlation between proportion of read
counts per sample. Dotted lines represent the medians of each method. The diagonal
line has a slope of 1. Some overrepresented samples from the Fluorescent Quantification
Normalization method [% Total Reads {greater than or equal to} 3X (median % Total
Reads )] were over penalized for the subsequent Read Count Normalization method,
which resulted in a lower percentage of Total Reads than the median across samples
within this normalization method. Nonetheless, the distribution of percentages of Total
Reads across samples of the Read Count Normalization method was tighter and the
median percentage of Total Reads across samples was higher.
Text S1 (mSystems00006-23-s0004.docx). Supplemental Materials and Methods.

Open Peer Review

PEER REVIEW HISTORY (review-history.pdf). An accounting of the reviewer comments
and feedback.

REFERENCES

1. McDonald D, Hyde E, Debelius JW, Morton JT, Gonzalez A, Ackermann G,
Aksenov AA, Behsaz B, Brennan C, Chen Y, DeRight Goldasich L,
Dorrestein PC, Dunn RR, Fahimipour AK, Gaffney J, Gilbert JA, Gogul G,
Green JL, Hugenholtz P, Humphrey G, Huttenhower C, Jackson MA,
Janssen S, Jeste DV, Jiang L, Kelley ST, Knights D, Kosciolek T, Ladau J,
Leach J, Marotz C, Meleshko D, Melnik AV, Metcalf JL, Mohimani H,
Montassier E, Navas-Molina J, Nguyen TT, Peddada S, Pevzner P, Pollard
KS, Rahnavard G, Robbins-Pianka A, Sangwan N, Shorenstein J, Smarr L,
Song SJ, Spector T, Swafford AD, Thackray VG, Thompson LR, Tripathi A,
Vázquez-Baeza Y, Vrbanac A, Wischmeyer P, Wolfe E, Zhu Q, American
Gut Consortium, Knight R. 2018. American gut: an open platform for
citizen science Microbiome research. mSystems 3:e00031-18. https://
doi.org/10.1128/mSystems.00031-18

2. Salosensaari A, Laitinen V, Havulinna AS, Meric G, Cheng S, Perola M,
Valsta L, Alfthan G, Inouye M, Watrous JD, Long T, Salido RA, Sanders K,
Brennan C, Humphrey GC, Sanders JG, Jain M, Jousilahti P, Salomaa V,
Knight R, Lahti L, Niiranen T. 2021. Taxonomic signatures of cause-
specific mortality risk in human gut microbiome. Nat Commun 12:2671.
https://doi.org/10.1038/s41467-021-22962-y

3. Feehily C, Crosby D, Walsh CJ, Lawton EM, Higgins S, McAuliffe FM,
Cotter PD. 2020. Shotgun sequencing of the vaginal microbiome reveals
both a species and functional potential signature of preterm birth. NPJ
Biofilms Microbiomes 6:50. https://doi.org/10.1038/s41522-020-00162-8

4. Miller S, Chiu C. 2021. The role of metagenomics and next-generation
sequencing in infectious disease diagnosis. Clin Chem 68:115–124.
https://doi.org/10.1093/clinchem/hvab173

5. Børsting C, Morling N. 2015. Next generation sequencing and its
applications in forensic genetics. Forensic Sci Int Genet 18:78–89.
https://doi.org/10.1016/j.fsigen.2015.02.002

6. Verma SK, Sharma PC. 2020. NGS-based characterization of microbial
diversity and functional profiling of solid tannery waste metagenomes.
Genomics 112:2903–2913. https://doi.org/10.1016/j.ygeno.2020.04.002

7. Mayday MY, Khan LM, Chow ED, Zinter MS, DeRisi JL. 2019. Miniaturiza-
tion and optimization of 384-well compatible RNA sequencing library
preparation. PLoS One 14:e0206194. https://doi.org/10.1371/jour-
nal.pone.0206194

8. Minich JJ, Humphrey G, Benitez RAS, Sanders J, Swafford A, Allen EE,
Knight R. 2018. High-throughput Miniaturized 16S rRNA Amplicon
library preparation reduces costs while preserving Microbiome integrity.
mSystems 3:e00166-18. https://doi.org/10.1128/mSystems.00166-18

9. Mildrum S, Hendricks A, Stortchevoi A, Kamelamela N, Butty VL, Levine
SS. 2020. High-Throughput minitaturized RNA-Seq library preparation. J
Biomol Tech 31:151–156. https://doi.org/10.7171/jbt.20-3104-004

10. Hussing C, Kampmann M-L, Mogensen HS, Børsting C, Morling N. 2018.
Quantification of massively parallel sequencing libraries-a comparative
study of eight methods. Sci Rep 8:1110. https://doi.org/10.1038/
s41598-018-19574-w

11. Sboner A, Mu XJ, Greenbaum D, Auerbach RK, Gerstein MB. 2011. The
real cost of sequencing: higher than you think! Genome Biol 12:125.
https://doi.org/10.1186/gb-2011-12-8-125

12. Robin JD, Ludlow AT, LaRanger R, Wright WE, Shay JW. 2016. Comparison
of DNA quantification methods for next generation sequencing. Sci Rep
6:24067. https://doi.org/10.1038/srep24067

13. Sequencing Library QC with the iSeqTM System. 2018. Internet. Illumina.
https://www.illumina.com/content/dam/illumina-marketing/docu-
ments/products/appnotes/novaseq-qc-iseq-app-
note-770-2018-019.pdf.

14. Sanders JG, Nurk S, Salido RA, Minich J, Xu ZZ, Zhu Q, Martino C, Fedarko
M, Arthur TD, Chen F, Boland BS, Humphrey GC, Brennan C, Sanders K,
Gaffney J, Jepsen K, Khosroheidari M, Green C, Liyanage M, Dang JW,
Phelan VV, Quinn RA, Bankevich A, Chang JT, Rana TM, Conrad DJ,
Sandborn WJ, Smarr L, Dorrestein PC, Pevzner PA, Knight R. 2019.
Optimizing sequencing protocols for leaderboard metagenomics by
combining long and short reads. Genome Biol 20:226. https://doi.org/
10.1186/s13059-019-1834-9

15. Illumina. 2019. QC and rebalancing of single-cell gene expression
libraries using the iSeqTM 100 system. Internet. Available from: https://
www.illumina.com/content/dam/illumina-marketing/documents/
systems/iseq/single-cell-library-qc-app-note-770-2019-029.PDF

Observation mSystems

Month XXXX  Volume 0  Issue 0 10.1128/msystems.00006-23 6

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

sy
st

em
s 

on
 0

8 
Ju

ly
 2

02
3 

by
 7

0.
95

.7
1.

12
6.

https://doi.org/10.1128/mSystems.00031-18
https://doi.org/10.1128/mSystems.00031-18
https://doi.org/10.1038/s41467-021-22962-y
https://doi.org/10.1038/s41522-020-00162-8
https://doi.org/10.1093/clinchem/hvab173
https://doi.org/10.1016/j.fsigen.2015.02.002
https://doi.org/10.1016/j.ygeno.2020.04.002
https://doi.org/10.1371/journal.pone.0206194
https://doi.org/10.1371/journal.pone.0206194
https://doi.org/10.1128/mSystems.00166-18
https://doi.org/10.7171/jbt.20-3104-004
https://doi.org/10.1038/s41598-018-19574-w
https://doi.org/10.1038/s41598-018-19574-w
https://doi.org/10.1186/gb-2011-12-8-125
https://doi.org/10.1038/srep24067
https://www.illumina.com/content/dam/illumina-marketing/documents/products/appnotes/novaseq-qc-iseq-app-note-770-2018-019.pdf
https://www.illumina.com/content/dam/illumina-marketing/documents/products/appnotes/novaseq-qc-iseq-app-note-770-2018-019.pdf
https://www.illumina.com/content/dam/illumina-marketing/documents/products/appnotes/novaseq-qc-iseq-app-note-770-2018-019.pdf
https://doi.org/10.1186/s13059-019-1834-9
https://doi.org/10.1186/s13059-019-1834-9
https://www.illumina.com/content/dam/illumina-marketing/documents/systems/iseq/single-cell-library-qc-app-note-770-2019-029.PDF
https://www.illumina.com/content/dam/illumina-marketing/documents/systems/iseq/single-cell-library-qc-app-note-770-2019-029.PDF
https://www.illumina.com/content/dam/illumina-marketing/documents/systems/iseq/single-cell-library-qc-app-note-770-2019-029.PDF
https://doi.org/10.1128/msystems.00006-23

	Maximizing the potential of high-throughput next-generation sequencing through precise normalization based on read count distribution

