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SUMMARY
Compositional oscillations of the gut microbiome are essential for normal peripheral circadian rhythms, both
of which are disrupted in diet-induced obesity (DIO). Although time-restricted feeding (TRF) maintains circa-
dian synchrony and protects against DIO, its impact on the dynamics of the cecal gut microbiome is modest.
Thus, other regions of the gut, particularly the ileum, the nexus for incretin and bile acid signaling, may play an
important role in entraining peripheral circadian rhythms. We demonstrate the effect of diet and feeding
rhythms on the ileal microbiome composition and transcriptome in mice. The dynamic rhythms of ileal micro-
biome composition and transcriptome are dampened in DIO. TRF partially restores diurnal rhythms of the
ileal microbiome and transcriptome, increases GLP-1 release, and alters the ileal bile acid pool and farnesoid
X receptor (FXR) signaling, which could explain how TRF exerts its metabolic benefits. Finally, we provide a
web resource for exploration of ileal microbiome and transcriptome circadian data.
INTRODUCTION

The gut microbiome plays a crucial role in many physiological

processes such as digestion and nutrient absorption, vitamin

synthesis, and immune system development and programming

(Gilbert et al., 2018; Lynch and Pedersen, 2016; Sharon et al.,

2014). Recent studies show an added role for the gut micro-

biome: the entrainment of intestinal and hepatic circadian

rhythms (Alvarez et al., 2020; Bishehsari et al., 2020; Frazier

and Chang, 2019; Thaiss et al., 2016; Zarrinpar et al., 2016).

Diet and feeding/fasting cycles drive diurnal oscillations of mi-

crobial communities and secondary metabolites in the gut

luminal environment. These oscillations are necessary for the

entrainment of peripheral circadian clocks and with it the diurnal

expression of hepatic and intestinal metabolic regulators that
This is an open access article und
control glucose, cholesterol, and fatty acid homeostasis and

overall host metabolic health (Bishehsari et al., 2020; Frazier

and Chang, 2019; Thaiss et al., 2014; Zarrinpar et al., 2016).

However, studies that investigate the relationship between the

gut microbiome and peripheral clocks using microbiome-deple-

tionmodels (Leone et al., 2015; Mukherji et al., 2013;Wang et al.,

2017; Weger et al., 2019) do not explain whether diet-induced

perturbations in microbiome dynamics could influence host

metabolism through circadian dyssynchrony (Saran et al.,

2020; Zarrinpar et al., 2016).

Diet-induced obesity (DIO) may give additional insight into the

relationship between perturbed luminal diurnal dynamics and

host metabolism. Conventionally raised mice given ad libitum

access to high-fat diet (HFD) lose their diurnal feeding pattern

and consume twice as many calories in the light period as they
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do before their diet was switched (Kohsaka et al., 2007). This

disruption of feeding pattern leads to dampening of hepatic

circadian rhythms and dysregulation of metabolic regulators

that are associated with increased adiposity, ectopic steatosis,

and insulin resistance (Chaix et al., 2014; Hatori et al., 2012).

Even though DIO disrupts the normal cyclical fluctuation of the

gut microbiome (Leone et al., 2015; Zarrinpar et al., 2014), the

impact of this hallmark characteristic on intestinal circadian

rhythms is poorly understood.

Time-restricted feeding (TRF), wherein food consumption is

consolidated to a window of 8–10 h during the dark (the active

period in mice), has numerous benefits on host metabolic health

(Chaix et al., 2014, 2019a, 2021; Hatori et al., 2012; Zarrinpar

et al., 2014). In mice consuming HFD, TRF results in reduced

adiposity, decreased inflammation, improved glucose tolerance

and cholesterol homeostasis, and reversal of pre-existing meta-

bolic syndrome, regardless of the type of obesogenic diet fed

(Chaix et al., 2014; Hatori et al., 2012; Sherman et al., 2012; Zar-

rinpar et al., 2014). However, despite many metabolic improve-

ments, the effects of TRF on the cyclical fluctuations of the cecal

microbiota were modest. However, its effects on serum and

fecal secondary metabolites were dramatic and could potentially

explain how TRF entrains peripheral clock or imparts its benefits

(Chaix et al., 2014; Zarrinpar et al., 2014).

Most gut microbiome research is focused on the large intes-

tine or its more accessible surrogate, stool (Gu et al., 2013; Mar-

tinez-Guryn et al., 2019; Thaiss et al., 2014, 2016). However,

other regions of the gut play a far more important role in host

metabolic homeostasis (Tuganbaev et al., 2020). In particular,

the ileum is unique in its functions of digestion and absorption

as well as in its microbial composition (Gu et al., 2013; Marti-

nez-Guryn et al., 2019). Ileal microbes play a vital role in meta-

bolic processes and immune modulation, both within the intesti-

nal microenvironment and systemically. For example, bile acids

are important signaling molecules in the gut, and bile acid

signaling receptors such as the farnesoid X receptor (FXR) and

the G protein-coupled bile acid receptor 1 (TGR5), which regu-

late several metabolic pathways, are highly expressed in the

ileum (Ridlon et al., 2016; Wahlstrom et al., 2016). FXR activation

in the ileum results in the upregulation of protective, anti-bacte-

rial immune responses (Inagaki et al., 2006). Regulation of

glucose metabolism via GLP-1 signaling also occurs primarily

in the ileum (Paternoster and Falasca, 2018), with the micro-

biome being an important component for the diurnal regulation

of incretin release (Martchenko et al., 2020). Furthermore, diurnal

rhythmicity of the small intestinal microbiome, shaped by diurnal

feeding patterns, is critical tomaintaining gut barrier function and

immune homeostasis (Tuganbaev et al., 2020).

Despite this, there are few studies that highlight the impor-

tance of the ileal gut microbiome and its impact on host meta-

bolic health. In this study, we investigated the diurnal dynamics

of the microbiome composition and transcriptome in the ileum

under normal and HFD feeding conditions. Our goal was to

determine how peripheral circadian rhythm is entrained in the

ileum and to characterize the role of the microbiome and tran-

scriptome under normal feeding, HFDs, and TRF given the

importance of incretin release and bile acid reabsorption

signaling in the ileum. The ileum has highly cyclical luminal mi-
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crobial dynamics and host transcriptomics that are greatly per-

turbed with DIO. TRF has a large impact on the ileal microbiome

composition, imposing a strong diurnal dynamic that is distinct

from both DIO mice and mice on a normal chow diet (NCD).

Moreover, TRF prevents the loss of host ileal diurnal transcrip-

tome dynamics and maintains the rhythmicity of the intestinal

clock. These effects on ileal dynamics could underlie TRF meta-

bolic benefits and effects on peripheral clock entrainment.

RESULTS

Diet and feeding pattern affect composition and diurnal
dynamics of ileal gut microbiome
To investigate the effects of TRF on host ileal cyclical activity, we

collected ileal samples from the samemice as described in a pre-

vious TRF experiment where the cecal microbiome was charac-

terized (Zarrinpar et al., 2014). The phenotype of mice with time-

restricted access to HFD (FT) was compared with mice with ad

libitum access to HFD (FA; which is the same as the DIO model)

and mice with ad libitum access to NCD (NA; control mice) (Fig-

ure 1A). After 8 weeks under these conditions, whole ileum was

collected every 4 h during a 24-h period (threemice per time point

per feeding condition) to investigate diurnal dynamics of both

luminal and adherent bacteria. TRF improves body weight and

blood glucose levels associated with HFD (Figures S1A and

S1B) despite isocaloric food intake compared with DIO (Chaix

et al., 2014; Hatori et al., 2012; Sherman et al., 2012).

The composition of the ileal microbiome, as determined by

16S amplicon sequencing of the host sample, was shaped by

diet (Figure 1B). Although mice in the NA condition had 1,134

amplicon sequence variants (ASVs) across all time points, mice

fed an HFD had about two-thirds as many in both FA and FT

feeding conditions (733 in FA; 706 in FT; Figure 1B). Although it

may seem like there are regional differences with a higher num-

ber of ASVs in the ileum compared with the cecum (Figures 1B

and S1C) (Zarrinpar et al., 2014), we cannot rule out that this

may be due to differences in 16S amplicon sequencing tech-

niques (see STARMethods). HFD reduced ileal microbiome ɑ-di-
versity, as determined by Faith’s phylogenetic diversity (PD) (p%

0.05 for FA and FT; Figure 1C), although ɑ-diversity measures

that did not rely on phylogeny, such as Shannon index, were

not changed between diet and feeding conditions (Figure S1D).

In the cecum, the Faith’s PD ɑ-diversity of the microbiome was

decreased, although the Shannon index was unchanged be-

tween diet and feeding condition (Figure S1E). Measures of ɑ-di-
versity (i.e., Faith’s PD) were not an indicator of improved meta-

bolic health in the FT condition since in both cecum and ileum

they were significantly lower than the NA condition.

To assess similarity of the microbiome between our three

different conditions, we calculated weighted UniFrac distances

to assess b-diversity. Between-class distances show that both

HFD conditions FA and FT are significantly different from our

NCD control mice in both cecum and ileum (Figures 1D and

S1F). However, the b-diversity distances between our FA and

FT mice were significantly lower, demonstrating that there is

less difference in the microbiome composition of HFD animals

and that diet has a larger influence on microbiome composition

than feeding pattern. Principal coordinates analysis (PCoA) of
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Figure 1. Microbiota diversity and cyclical pattern at the ileum

(A) Schematic representation of study design and sample collection.

(B) Shared ASVs between conditions.

(C) Measures of ɑ-diversity within each sample based on phylogenetic distance (Faith’s PD).

(D) Overall b-diversity across conditions time points.

(E) Principal coordinate analysis (PCoA) of ASVs colored by condition and collection time.

(F) Cycling (JTK_CYCLE algorithm, MetaCycle) based on the total number of ASVs or reads.

(G) Differential ranking between conditions as determined by Songbird. Statistical significance was assessed with the Mann-Whitney U test. *p < 0.05; **p < 0.01;

***p < 0.001; n.s., not significant. Three mice per time point were used for each condition, for a total of NA (n = 18), FA (n = 18), FT (n = 18).
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microbiome samples showed similar results. The NA ileal micro-

biomes were distinct from both FA and FT ileal microbiomes (NA

versusFApermutationalmultivariate analysis of variance [PERM-

ANOVA] pseudo-F = 15.12, p = 0.001; NA versus FT PERM-
ANOVApseudo-F = 16.58, p = 0.001; Figure 1E). This stark differ-

ence was also true in the cecum (NA versus FA PERMANOVA

pseudo-F = 13.38, p = 0.001; NA versus FT PERMANOVA

pseudo-F = 14.87, p = 0.001; Figure S1G). However, feeding
Cell Reports 40, 111008, July 5, 2022 3



Figure 2. Microbiota cycling dynamics signatures of the ileum at the family and genus level

(A) Relative abundance of top 10 bacterial families by time point for each condition.

(B–E) Relative abundance for specific bacteria at the genus taxonomic level. Shaded areas show standard error of mean (SEM).

(F–H) Log ratios of major differentially ranked bacteria (obtained from Songbird) separated by light and dark phases. Colored ‘‘@’’ symbols represent bacteria

cycling under specific feeding conditions (NA = blue; FA = red; FT = green; MetaCycle JTK_CYCLE method p value <0.05). Statistical significance was assessed

with Mann-Whitney U test. *p < 0.05; **p < 0.01; ***p < 0.001. Light and dark periods are represented by white and black horizontal bars, respectively. TRF food

interval is represented by a yellow bar. Three mice per time point were used for each condition, for a total of NA (n = 18), FA (n = 18), FT (n = 18).
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pattern created a distinction in the ileal microbiome composition

of FA and FT mice as well (FA versus FT PERMANOVA pseudo-

F = 2.87, p = 0.035; Figure 1E) as well as the cecal microbiome

(FA versus FT PERMANOVA pseudo-F = 3.52848; p = 0.015; Fig-

ure S1G). Despite an apparent variation in diversity at zeitgeber

time (ZT) 13 in the ileum, which is when TRF are given access

to food, microbiome b-diversity dynamics between NCD and

each HFD condition (FA or FT) are not significant in both ileum

and cecum (Figure S1H).

Because the maintenance of microbial, circadian, and meta-

bolic rhythms has been linked with the benefits of TRF on meta-

bolic function (Saran et al., 2020; Zarrinpar et al., 2016), we next

investigated microbiome cyclical patterns using the JTK_CYCLE

algorithm (Hughes et al., 2010) in MetaCycle (Wu et al., 2016).

Compared with the NAmice, FAmice had less than half the num-

ber of cycling ASVs (Figure 1F). However, TRF displays a similar

level of cyclical fluctuations observed for animals under the NA

condition despite being fed an HFD. This is likely a result of a
4 Cell Reports 40, 111008, July 5, 2022
few predominantly cyclical ASVs, as shown by the percentage

of total ASV reads cycling (Figure 1F). Themain taxa differentially

ranked genera between NCD and HFD, as determined using

Songbird (Morton et al., 2019b), include Ruminococcaceae, Lac-

tococcus, Tuzzerella, and Enterococcus. On the other hand, the

genera Lactococcus and Erysipelatoclostridium were identified

as enriched in FA compared with FT (Figure 1G). Together, these

findings indicate the ileal microbiome displays robust diurnal dy-

namics that are disturbed by diet in a feeding-pattern-dependent

manner.

TRF maintains bacterial cyclical dynamics in the ileum
Tocharacterize thecyclical oscillationsof the ilealmicrobiomeand

determine their importance in host metabolism, we investigated

the relative abundances of taxa under different diet and feeding

conditions over time. Firmicutes were the predominant phylum

across all conditions. Similar to what has been observed in the

cecum and stool, the abundance of Bacteroidota decreased
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Figure 3. Ileal microbiota cycling and composition in CDKO mice

(A) Bar plot illustrates percentage of microbes at various taxonomic levels displaying cyclical dynamics in CDKO mice compared with WT mice with ad libitum

access to normal chow (NA).

(B) PCoA of weighted UniFrac distances for CDKO-NA compared with WT-NA.

(C) Relative abundance of top 10 families in CDKO mice by time point. Light and dark periods are represented by white and black horizontal bars, respectively.

Three or two mice per time point were used for WT-NA (n = 18) and CDKO-NA (n = 12), respectively. Animals are from different maternal lines.
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dramatically under bothHFDconditions (Figure S2A). Family-level

analysis revealed that diet and foodaccessmodulatedoscillations

inbacterial taxaandabundanceovera24-hperiod, asexemplified

by the top 10most representative families (Figure 2A). Bacteria at

the highest and lowest differential rankings or with different rhyth-

micity between conditions (Figures 1G and S2B) were further

analyzed. At the genus level, Lactobacilluswas found in all condi-

tions but had a cyclical pattern only under HFD conditions (Fig-

ure 2B), with its level greatly reduced during the dark phase in

FT when the mice have access to food (Figure 2B). On the other

hand, Lactococcus, which is found in the irradiated HFD (Bisanz

et al., 2019), displayed abundance in agreement with food inges-

tion patterns of animals under both HFD conditions, although

rhythmicity was observed only in FT (Figure 2C). During the begin-

ning of the dark phase, a spike was seen in Staphylococcus in NA

and FT mice, whereas the FA mice did not have this spike

(Figures 2A and 2D). Despite this increase in both NA and FT

mice,Staphylococcushadsignificant cycling inFTbut notNA (Fig-

ure 2D). Finally,Streptococcus levels followed the feeding pattern

of mice under the different conditions, and only displayed rhyth-

micity in NA and FT mice (Figure 2E).

Because log ratios of bacteria, as opposed to relative abun-

dances, take advantage of reference frames and are not depen-

dent on bacterial load information, they are more robust and yield

more reproducible measures. Thus, we next evaluated if differ-

ences were observed in the log ratios of some high-ranking mi-

crobes between light and dark phases. Log ratios for bacteria

whose differentials were predominant across conditions or be-

tween light and dark phases are shown in Figure S2C. Differences

between conditions occurred during the light and dark cycles for

Ruminococcaceae/Lactococcus, Turicibacter/Enterococcus and

Enterococcus/Lactococcus (Figures 2F–2H). Together, our find-

ings suggest that TRF affects the diurnal dynamics of the gut

microbiome composition at the ileum. An interactive tool

allows researchers to investigate bacterial families at https://

zarrinparlab.github.io/ti_cycling_paper/ti_16S_family_abundance.

html (Figure S3).
Host clock genes influence the diurnal dynamics of ileal
microbiome composition
To test whether circadian clock genes are important for micro-

biome dynamics, we used a Cry1;Cry2 double-knockout (CDKO)

mouse (Vitaterna et al., 1999). Since HFD disrupts circadian

gene expression, we used a CDKO mouse model with ad libitum

access to an NCD (CDKO-NA) to investigate diurnal dynamics of

thegutmicrobiome. Feedingbehavior andmetabolic phenotyping

of these animals is well documented in previous studies, where

CDKO-NA mice lose diurnal feeding pattern and have disrupted

feeding patterns (Chaix et al., 2019a; Vollmers et al., 2009).Micro-

bial cycling in the ileum was completely abolished in CDKO-NA

mice (Figure 3A). PCoA analysis (Figure 3B, CDKO-NA versus

wild-type [WT]-NA PERMANOVA pseudo-F = 3.0083, p = 0.045)

reflects the perturbed rhythms in these mice (e.g., feeding,

sleeping). The most prevalent bacteria found in the ileum of these

mice were members of the Erysipelotrichaceae and Lactobacilla-

ceae families (Figure 3C). These results further suggest that the

host molecular circadian clock is linked to microbiome ileum dy-

namics and that interfering with the host circadian clock disrupts

the diurnal rhythm of the ileal microbiome, likely through a

disturbed feeding pattern.

TRFmaintains host transcriptome diurnal dynamics and
intestinal clock
Because the diurnal dynamic of the microbiome can affect that

of the hepatic transcriptome (Leone et al., 2015; Manella et al.,

2021; Weger et al., 2019), we hypothesized that the ileal

transcriptome would also be affected by these luminal oscilla-

tions. Moreover, because the FA condition led to a decrease

in the percentage of ASVs that had diurnal fluctuations, and

the FT condition dramatically increased this number, we also

hypothesized that FT could prevent the loss of daily cyclical

dynamics of the ileal transcriptome. Ileal transcriptome analysis

by RNA sequencing (RNA-seq) followed by rhythmic analysis

using MetaCycle revealed that the overall number of cycling

transcripts was dramatically decreased in FA compared with
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Figure 4. Host transcriptome cycling dynamics in the ileum

(A) Percentage of cycling and non-cycling transcripts by condition (chi-squared p <0.05).

(B) Venn diagram showing number of cycling protein-coding transcripts.

(C) Heatmaps show the expression levels of the 1,862 genes that have circadian cycling in all three conditions. Rows were sorted by gene expression cycling

phase based on NA. Values are Z scores of expression levels in transcripts per million (TPM).

(D) Phase distribution of cycling genes.

(E) Enriched gene ontology (GO) terms based on genes that lost cycling in FA, but not FT.

(F) Double plot showing gene expression of circadian genes. Three mice per time point were used for each condition, for a total of NA (n = 18), FA (n = 18), FT

(n = 18). Shading areas show standard error of mean (SEM).
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NA, and partially maintained in FT (Figures 4A and 4B). We

observed that 1,862 protein-coding genes had circadian cycling

across all three conditions (Figure 4B). However, closer analysis

of these transcripts showed that HFD still disrupted their

rhythms in FA mice by inducing a phase shift toward the light
6 Cell Reports 40, 111008, July 5, 2022
period (Figures 4C and 4D). Notably, TRF partially maintained

the phase of these transcripts in the FT mice (Figures 4C

and 4D). This suggests that rhythmic luminal dynamics is

related to circadian maintenance of TRF on the host peripheral

clock.
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Since theFAconditiondisruptscyclingofanumberofgenes,we

interrogatedwhich genes had their cyclingmaintained by TRF. An

enrichment analysis based on shared cyclical genes between NA

and FT, but not FA, indicated that the significant Gene Ontology

(GO) (Ashburner et al., 2000; Gene Ontology, 2021) terms main-

tained by TRF comprise a wide range of terms, including those

related to phospholipid metabolism, autophagy, and circadian

rhythms (Figure 4E).Conversely, a number of genes gain circadian

oscillations in FA only, for which enriched pathways are shown in

FigureS4. The fact that TRFmaintainsdiurnal fluctuationof themi-

crobiome and protects mice from the detrimental metabolic ef-

fects of HFD suggests that circadian and metabolic genes were

important for the effects of TRF on the host intestinal clock. In

fact, cyclical dynamics of major circadian genes were disrupted

by HFD (Figure 4F). HFD ad libitum induced loss of cycling in

Rev-erb,Per3, andClock, all ofwhichweremaintained inTRF (Fig-

ure 4F). A change in phase was also observed forBmal1 andCry1

in FA but maintained in FT (Figure 4F) according to phase esti-

mates from MetaCycle (Wu et al., 2016). Contrary to what was

observed for these circadian genes, a loss of rhythmicity is

observed in Cry2 under the FT condition. In addition, Ppara and

Nfil3, circadian regulatory genes that aremodulated by the gutmi-

crobiota (Mukherji et al., 2013;Wangetal., 2017),werealsodamp-

ened in theFAcondition throughphaseshift anddisruptedcycling,

respectively, but were maintained in the FT condition (Figure 4F).

Hence, TRF prevention of obesity and dysmetabolism occurs in

the setting of maintained ileal circadian cycling, maintenance of

the phase of cycling in the clock genes, and maintained luminal

diurnal dynamics. Since inconsistencies in previous studies of

the intestinal transcriptome could be explained by studies not ac-

counting for circadian timingof their targetgenes,wehavecreated

an interactive tool to allow investigators to determine the cycling

and phase of their target genes and additional RNA-seq data at

https://zarrinparlab.github.io/ti_cycling_paper/ti_expression.html

(Figure S3).

TRF reprograms host transcriptome in the ileum
Having observed that DIO (i.e., the FA condition) dampens

diurnal fluctuation of the luminal microbiota and the ileal tran-

scriptome, and that TRF (i.e., the FT condition) maintains micro-

biome and host transcriptome circadianness (Figures 1 and 4),

we investigated the altered products and potential pathways

through which the ileum can contribute to the TRF metabolic

outcomes. Visual inspection of principal component analysis

(PCA) of transcriptome data suggests that mice ileum samples

are distinguished under different diet and feeding conditions

(Figure 5A), which could indicate that metabolic phenotype

alone does not dictate transcriptional activity in the ileum. To

determine which transcripts were involved in modulating the

similar lean, insulin sensitive metabolic phenotype in FT and

NA conditions, we determined differentially expressed (DE)

genes between NA versus FA and FT versus FA mice. Overall,

TRF had a greater effect on gene expression with an increased

number of DE genes between FT and FA compared with NA and

FA in the ileum (Figures 5B and 5C), a phenomenon that is

observed across different time points (Figure S5). Hence, even

though diet was the same between FA and FT, and the micro-

biome was less different, the feeding pattern change had a
bigger impact on the ileal transcriptome than the lean pheno-

type itself.

We next determined which pathways were involved in the

phenotypic differences observed in our study by performing an

over-representation analysis of DE genes in FT versus FA and

NA versus FA, since these can be potential targets for the treat-

ment of obesity and diabetes and could explain how TRF main-

tains metabolic homeostasis in the face of a nutritional chal-

lenge. HFD ad libitum disrupts the transcriptome with dynamic

circadian changes in DE genes and over-represented GO terms

(Figure 5D, NA versus FA). This is mostly driven by genes

involved in digestion, metabolism, and defense response. Sur-

prisingly, in HFD, over-represented terms between FT and FA

mostly displayed constitutive patterns throughout the light and

dark periods. This suggests that restricting HFD access by

TRF induces transcriptional changes that are inherently different

from those observed by a change in diet alone (Figure 5D, FT

versus FA). The majority of over-represented terms between

FT and FA are related to defense response and chromosome or-

ganization. Overall, TRF acts on immune-related pathways and

reprogramming specific nucleosome and chromatin ones (Fig-

ure S6). Genes involved in immune response to bacterium

(Figures 5D and 5E) have decreased expression levels in FA,

particularly ⍺-defensins, whose major components are secreted

by Paneth cells in response to bacteria stimuli (Ayabe et al.,

2000; Ouellette, 2010). FT maintained high expression levels of

⍺-defensins, demonstrating how feeding pattern can have a pro-

found effect on host ileal gene expression.

To investigate host-microbe relationships further, we per-

formed a co-occurrence analysis between the host transcrip-

tome and microbiome within the ileum using mmvec (Morton

et al., 2019b). Major co-occurrence probabilities depict possible

relationships between the host transcriptome and microbiome

(Figures 6A and 6B). Transcripts belonging to the GO term de-

fense response to bacterium display a strong relationship with

specific microbes (Figure 6A). There is a high conditional prob-

ability that these transcripts co-occur with Lactococcus and

Enterococcus species, with the opposite trend being observed

for Staphylococcus and Akkermansia (Figure 6B). The biological

significance of these findings requires additional in vivo valida-

tion. Collectively, transcriptome analysis of the ileum of NA,

FA, and FT mice suggests that diet and feeding pattern modu-

late distinct effects on host transcriptional networks. Most en-

riched GO terms between NA and FA conditions act in a circa-

dian manner through regulation of digestive, lipid, metabolic,

and immune pathways. Enriched terms between FT and FA,

on the other hand, are observed as constitutive, suggesting

that TRF acts as a different entity that could remedy the dysme-

tabolism induced by HFD through the modulation of a specific

set of genes different from those disrupted by HFD alone in

FA mice.

TRF alters GLP-1 and bile acid signaling
Since TRF improves insulin sensitivity and adiposity in mice

consuming an HFD (Figure S1A), we investigated how this

feeding pattern affected intestinal metabolic signaling pathways

in the context of preserved diurnal oscillation of the gut micro-

biome and ileal clock (Figures 4D–4F). Here we specifically focus
Cell Reports 40, 111008, July 5, 2022 7
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Figure 5. Differential gene expression analysis

(A) PCA of transcriptome shows clustering of transcripts by condition (diet + feeding patterns) with variations with time of the day. Ellipses show 95% confidence

level for a group of points.

(B and C) Volcano plots show log2 fold change (LFC) of gene expression between conditions and �log10 of p values. Dashed lines represent an absolute LFC

cutoff of 1.0 (vertical lines), or�log10(p value) of 2 (horizontal line). Data point colors are based on the following criteria: orange represents significant p value and

above LFC cutoff; purple represents significant p value; dark gray represents above absolute LFC cutoff; light gray represents not significant. Number of up-

regulated and downregulated transcripts based on cutoffs are 160 and 203 respectively for NA versus FA; and 600 and 5984 respectively for FT versus FA.

(D) Over-represented GO annotations obtained from differentially expressed (DE) genes between conditions, by time point. The GO annotation ‘‘Defense

response to bacterium’’ is highlighted in red and further shown in (E).

(E) Heatmap of normalized expression of DE genes based on the GO term defense response to bacteria. Scores are based on vst-transformed values (Love et al.,

2014). Three mice per time point were used for each condition, for a total of NA (n = 18), FA (n = 18), FT (n = 18).

Article
ll

OPEN ACCESS
on pathways related to GLP-1, which is a major glucoregulatory

ileal hormone, and fibroblast growth factor 15 (FGF-15), which is

released with FXR activation (Figure 7) (Drucker, 2018; Gadaleta

and Moschetta, 2019; Zarrinpar et al., 2014; Zarrinpar and

Loomba, 2012).
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The expression level of the proglucagon gene Gcg (a precur-

sor of GLP-1) is dampened, and arrhythmic in the FA condition

(Figures 7A and S7). However, TRF elevates Gcg expression

levels andmaintains its circadianness in FTmice. These changes

in Gcg in FT mice are accompanied with decreased expression
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Figure 6. Relationship between host transcriptome and microbiome

(A) Biplot representing co-occurrence probabilities between ileal host transcripts and gut microbes. Principal components (PCs) PC1 and PC2 based on mmvec

conditional probabilities are represented. Points and arrows represent specific transcripts and microbes, respectively. Direction of arrows represent co-

occurrence patterns between microbe and transcript. Color of points represent specific GO terms that transcripts belong to.

(B) Heatmap showing snapshot of conditional probabilities between ASVs and host transcripts part of the defense response to bacteriumGO term. The families of

identified ASVs are denoted by the legend. Three mice per time point were used for each condition, for a total of NA (n = 18), FA (n = 18), FT (n = 18).
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of Dpp4, which encodes the enzyme that degrades GLP-1 and

plays a key role in glucose metabolism (Figures 7A and S7). Ileal

Gcg expression is increased when there are more nutrients (e.g.,

glucose, free fatty acids/short-chain fatty acids [SCFAs]) in the

distal gut. Ad libitum consumption of HFD led to phase shifts

of the gene expression of the transporters of these nutrients,

such as GLUT5 (Slc2a5) and GLUT2 (Slc2a2) for glucose and

GPR40 (Ffar1), GPCR43 (Ffar2) and GPR120 (Ffar4) for FFAs/

SCFAs. Moreover, it also led to dampening of Ffar4 expression

and a decreased Ffar3 amplitude. The expression of most of

these transporters in FT mice is indistinguishable from NA

mice, demonstrating how the feeding pattern is a major modu-

lator of normal expression of these genes. Moreover, increased

expression of these genes may explain why Gcg expression is

persistently elevated in FT compared with FA mice.

To determine if these gene expression changes affected

actual incretin levels, we measured active GLP-1 (aGLP-1)

serum levels in dark and light phases of FA and FT mice. Impor-

tantly, as suggested by the transcriptomics results, the aGLP-1

levels were 2-fold higher in the dark phase in FT mice (during

feeding; p = 0.04) compared with FA mice. However, during

the light phase, when FT mice are not consuming any food,

aGLP-1 was lower and not significantly different from that

measured in FA mice (p = 0.15; Figure 7B). Another glucoregula-

tory hormone released at the ileum is peptide tyrosine-tyrosine

(PYY), which signals satiety and decreases food intake. Pyy

expression was similar in FA mice compared with what was

observed in NA mice. Expression in FT mice, however, was pre-

dominantly increased (Figure S7A), although it should be noted
that FT mice do not have altered food intake (Chaix et al.,

2014; Hatori et al., 2012).

Along the bile acid-FXR-FGF15 signaling pathway, which reg-

ulates enterohepatic bile acid response, the FA condition

dramatically affects bile acid signaling (Figures 7C and S7B).

First, compared with NA mice, the FA mice had altered unconju-

gated to conjugated bile acid ratios between light and dark

phases (Figure 7C). However, every single pair of unconju-

gated/conjugated bile acid becomes similar to NA in the FT con-

dition, which is primarily driven by the variation of unconjugated

bile acids (Figure S7B). Second, a number of transcripts in the

bile acid-FXR-FGF15 pathway are disrupted in gene expression

levels and circadian rhythmicity (Figures 7D and S7A). Transcrip-

tional regulation of different components is partially regulated in

enterocytes by FXR (encoded by Nr1h4 gene). Surprisingly,

across NA, FA, and FT, gene expression levels of Nr1h4 are

the same (Figures 7D and S7), despite previously observed bile

acid homeostatic disruptions in HFD (Zarrinpar et al., 2014).

This is consistent with what we have observed in the liver,

despite the differential regulation of many downstream hepatic

targets of FXR (Hatori et al., 2012). However, unlike in the liver,

we noted a dampening of Nr1h4 circadian rhythmicity in FA,

which is maintained in FTmice (Figures 7D and S7). Fgf15, a crit-

ical component of the bile acid signaling pathway, displays

cyclical patterns across all three conditions, but increased am-

plitudes under HFD conditions (Figures 7D and S7). One of its

regulators, SHP, is encoded by Nr0b2, a downstream target of

FXR, which is dramatically overexpressed in FT animals

compared with both NA and FA. Specifically, robust cycling
Cell Reports 40, 111008, July 5, 2022 9
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Figure 7. Disruption of metabolic signaling pathways of the ileum

(A) Schematic representation of expression levels of GLP-1 signaling pathway genes.

(B) Plasma active GLP-1 (aGLP-1) levels in mice fed HFD under FA or FT conditions.

(C) Ratios of unconjugated to conjugated bile acids in light and dark phases for each condition.

(D) Schematic representation of expression levels of bile acid signaling pathway genes.

(E) Serum cholesterol levels under different feeding conditions. Transcript levels are expressed as TPM. Please see Figure S7 for figures with y axis measures.

NA = blue, FA = red, FT = green. Three mice per time point were used for each condition, for a total of NA (n = 18), FA (n = 18), FT (n = 18) in (A) and (B). Shading

areas show standard error of mean (SEM).
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and higher amplitude are observed for Fgf15 in FA mice. This is

contrary to what is observed in NA, for which expression levels

are lower than both FA and FT. In addition, circadian gene

expression of bile acid transporters Fabp6 (IBABP), Slc51a

(OST-ɑ), and Slc51b (OST-b) were altered by HFD, while

Slc10a2 (ISBT) remained unaltered (Figures 7D and S7). TRF

led to maintenance of gene expression levels for Fabp6 and

circadian rhythmicity for Slc51a and Slc51b. Ultimately, ileal

bile acid signaling controls de novo bile acid synthesis from

cholesterol by CYP7A1 (Chiang, 2009). We had previously
10 Cell Reports 40, 111008, July 5, 2022
shown hepatic expression of Cyp7a1 to be suppressed in FA

mice that also have elevated serum cholesterol levels, whereas

TRF preserved normal Cyp7a1 expression and cholesterol ho-

meostasis (Figure 7E) (Hatori et al., 2012; Zarrinpar et al.,

2014). Additional gene expression levels of transcripts related

to the metabolic phenotypes studied here are depicted in Fig-

ure S7 and can be searched with our online tool (see Figure S3).

Overall, our results suggest that GLP-1 and bile acid

signaling are compromised under DIO but maintained by

TRF. Gcg and Dpp4 lose circadian rhythmicity and have their
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expression levels decreased when mice are given ad libitum

access to HFD. TRF, however, maintains circadian dynamics

of both and led to changes in gene expression for additional

transporters involved in GLP-1 signaling. Furthermore, bile

acid pool, transport, reabsorption, and signaling are compro-

mised under DIO but maintained by TRF. Bile acid signaling

in hepatocytes is likely disrupted by DIO, with increased oscil-

lations in mice fed an ad libitum diet compared with normal or

TRF conditions.

DISCUSSION

The gut microbiome is intimately related to circadian rhythms,

and dysregulation of major circadian genes as well as time of

feeding are disruptors of the gut microbiome in animal models

(Bishehsari et al., 2020; Choi et al., 2021; Frazier and Chang,

2019). What is less understood is how the gut microbiome and

oscillations in its daily rhythms contribute to host phenotype

and physiology, particularly in the ileum, which is a major region

responsible for regulating host metabolic signaling and physi-

ology. We address this gap in knowledge with an omics

approach in a mouse model of DIO and a model of TRF, which

prevents HFD-induced weight gain and dysmetabolism, in spite

of both models consuming the same amount of calories (Chaix

et al., 2014; Hatori et al., 2012). Our results reveal disrupted

rhythms on microbiome components and transcriptome path-

ways, and identify potential functional ways through which

some of the metabolic benefits of TRF could be mediated. DIO

disrupts the total number of cyclical ASVs and transcripts to a

greater extent than TRF, suggesting that TRF alone alleviates

some of the effects of DIO, potentially by modulating the intesti-

nal clock. This opens a paradigm where entrainment of the pe-

ripheral clock could be modulated by the ileum.

Interestingly, the ileal microbiome is very dynamic in TRF, with

an increased percentage of ASVs cycling and more reads

belonging to these ASVs (Figure 1F). Nevertheless, diet remains

a powerful influence in the composition and dynamics of the ileal

gut microbiome as demonstrated by compositional and a-diver-

sity similarities between the two HFD conditions, which is

consistent with what we had reported in the cecum (Zarrinpar

et al., 2014). Despite different techniques used for the cecal

and ileal microbiomes analysis, the overall conclusions of each

experiment stand independently and highlight how circadian os-

cillations vary in the ileum and cecum based on diet and feeding

conditions.

TRF could exert its effects by modulating changes of specific

bacteria levels involved in metabolic processes. Additional fac-

tors, such as food consumption and behavior, are also apparent

from our microbiome data. For instance, Lactococcus—a

contaminant present in irradiated high-fat food (Bisanz et al.,

2019) —exhibits a clear pattern based on the feeding schedule

of our mice. Also, Staphylococcus, which is prevalent on themu-

rine skin (Belheouane et al., 2020), has an increased pattern in FT

andNAmice, and could point toward grooming behavior in these

animals prior to feeding. Intriguingly, it is unclear if these bacte-

rial ‘‘contaminants,’’ whether they be from food or skin, play a

role in eliciting a physiological response. This is relevant because

microbiota organisms can act as entraining agents of daily
rhythms, as recently reported for segmented filamentous bacte-

ria diurnal oscillations and daily rhythms in innate immunity

through the expression of antimicrobial proteins (Brooks et al.,

2021). We plan to use recently developed tools to interrogate

whether TRF-induced microbiome changes, such as the

changes in conjugated and unconjugated bile acids, induce

host metabolic change through functional manipulation of the

gut microbiome in conventionally raisedmice. A study in full con-

ventional mice with engineered native bacteria that express bile

salt hydrolase (BSH), an enzyme from the gut microbiome impor-

tant for bile acid metabolism, shows that BSH affects glucose

homeostasis (Russell et al. in press). Thus, additional studies

that allow for functional manipulation of the gut microbiome

will allow us to determine contributions and causality of individ-

ual bacteria or bacterial functions on the mechanisms of action

of TRF.

The results of CDKO mice show that an intact host circadian

clock is required for normal ileal microbiome dynamics and is

consistent with previous reports of microbiome circadian disrup-

tions when using whole-body knockouts of clock genes Bmal1

and Per (Liang et al., 2015; Thaiss et al., 2016). TRF protects

CDKO animals from metabolic disruptions (Chaix et al., 2019a).

Moreover, restricted feeding recovers some transcriptional ac-

tivity that had been lost in these animals (Chaix et al., 2019a;

Weger et al., 2021). Together, these studies further advance

the theory that the central clock’s main method of regulating pe-

ripheral clocks is likely through regulating feeding behavior and,

with it, microbiome dynamics, as opposed to an as-yet uniden-

tified neurohumoral mechanism (Frazier and Chang, 2019).

Studies in germ-free and antibiotic-treated mice indicate that

the microbiome is necessary for peripheral circadian rhythms

in the intestinal and hepatic clock and even in hypothalamic

nuclei (Leone et al., 2015;Weger et al., 2019). For example, mod-

ulation of the small intestine microbiome through AIMD led to

loss of Per2 rhythmicity (Martchenko et al., 2021). Previous

work also showed that DIO mice have dyssynchronous hepatic

circadian rhythms in the setting of disrupted cecal microbiome

rhythms (Leone et al., 2015). We extend this work by showing

that ileal microbiome and transcriptome circadian rhythms are

also disrupted in DIO. Moreover, we show that TRF (Chaix

et al., 2019b) has a corrective effect on the ileal microbiome

rhythms and maintains ileal peripheral rhythms, particularly to

the circadian clock genes. However, it is unclear which second-

ary metabolites or proteins can act as entraining agents to the

peripheral clock, although SCFAs and deconjugate bile acids

have been suggested by some studies (Bishehsari et al., 2020;

Choi et al., 2021; Frazier and Chang, 2019).

Transcriptomic analysis indicates that DIO perturbs the intes-

tinal clock andmetabolic pathways of the ileum, which in turn are

maintained by TRF. For example, genes encoding SCFAs (Tol-

hurst et al., 2012) and fructose transporters (Ferraris et al.,

2018), whose activations are involved in stimulating GLP-1

secretion, are dampened in DIO (Figure 7A). Increased levels of

Pyywith TRF could explain why early studies of TRF show caloric

restriction or reduced appetite in humans (Gill and Panda, 2015;

Sutton et al., 2018; Wilkinson et al., 2020). DIO dampens circa-

dian rhythms not only through loss of cyclical patterns but also

through more nuanced changes in circadian gene expression
Cell Reports 40, 111008, July 5, 2022 11
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such as amplitude and phase shifts (Figures 4C and 4D). TRF, on

the other hand, prevents the dampening or perturbation of these

rhythms. TRF mice display constitutive changes in the ileum

transcriptome in addition to preventing the DIO dysmetabolic

phenotype and liver dyssynchronous rhythms (Hatori et al.,

2012). This suggests that TRF acts not only through the mainte-

nance of pathways disrupted under DIO but also through a

unique response to circadian changes in feeding pattern. Our re-

sults suggest that immuno-regulatory pathways are related to

differences in TRF/DIO response. Thus, studies with Mmp7�/

�mice might help elucidate some of the molecular mechanisms

of TRF response such as regulation of alpha-defensins.

To better understand the relationship between themicrobiome

and host transcriptome, we performed a trans-omic co-occur-

rence analysis where we found strong conditional probabilities

of specific bacterial families and genes co-occurring (Figure 6).

This strongly suggests that relationships between ileal microbes

and host transcripts exist, although this relationship might not be

specific to the ileum. For instance, modulation of SCFAs through

oscillation of the cecal microbiota affects colon transcriptome

regulation (Arora et al., 2019). Thus, the biological implication

of our findings requires further investigation. Multi-omic analyses

using a variety of dietary, gut regional, host phenotype, feeding

pattern, and collection time points will help eliminate spurious

findings and buildmore accuratemodels that can be better inter-

rogated over time.

Our findings further highlight potential implications of regional

differences in circadian dynamics and the need for better circa-

dian phenotype, transcriptome, and microbiome characteriza-

tion. It is conceivable that two investigators performing the

same exact study in similar settings may come to different con-

clusions solely based on the timing of their sample collection.

This is particularly important with microbiome analysis (Allaband

et al., 2021). Moreover, it is possible that specific interventions or

drugs may only be effective at specific times due to availability of

xenobiotics or the amplitude of key metabolizing genes, which

can alter results significantly between studies. This, in turn,

prompted us to provide aWeb resource of circadian microbiome

and transcriptome data that can be easily queried. This resource

could aid in explaining discrepancies obtained across similar ex-

periments and enable investigators to make better-informed de-

cisions about experiments, since oscillations within daily pat-

terns vary greatly and can influence interpretation of results.

Limitations of the study
Ourmicrobiome and transcriptome ileal results demonstrate that

TRF acts through maintenance of diurnal fluctuation and the

restoration of host phenotype. Nonetheless, duodenal and jeju-

nal tissue, as well as nutrients absorbed in these regions, likely

play an important role in metabolism despite their lower microbi-

al and secondary metabolites content. Thus, additional studies

targeting multiple GI tissues are needed to disentangle the con-

tributions of TRF on metabolism and circadian rhythms. Further-

more, different sequencing techniques were used for ileal and

cecal microbiome experiments, which made comparisons of

these regions difficult to perform. Moreover, the CDKO mice

are of different maternal line than control mice, which could

affect the composition of the gut microbiome, again making
12 Cell Reports 40, 111008, July 5, 2022
comparisons between conditions difficult to perform. As demon-

strated in our transcriptomic analysis, TRF affects many physio-

logical processes. Although we have focused primarily on bile

acid and incretin signaling, it is possible that other processes,

such as inflammation, gut barrier function, and autophagy, which

are also affected by TRF, could play as important a role, which

we hope other investigators will explore. Although we have

used the most state-of-the-art bioinformatic tools available to

study the relationship between the gut microbiome and host

transcription as part of our multi-omic analysis, these findings

are still associative and require additional investigation. We

plan to use functional manipulation of the gut microbiome

through engineered native bacteria (Russell et al. in press) to

allow us to mechanistically investigate the relationship between

specific bacterial functions and host physiological processes.
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Raw ileal RNA-seq data This paper ENA: PRJEB47185

Raw ileal 16S amplicon s

equencing data

This paper ENA: PRJEB47185

Raw cecal 16S amplicon

sequencing data

Zarrinpar et al., 2014 Satchidananda Panda Lab

Targeted metabolomics data

for bile acids

This paper Mendeley Data, V1, https://doi.org/10.17632/xyxpvsyvzn.1

Cholesterol data Zarrinpar et al., 2014 Mendeley Data, V1, https://doi.org/10.17632/xyxpvsyvzn.1

Weight and blood glucose data Zarrinpar et al., 2014 Mendeley Data, V1, https://doi.org/10.17632/xyxpvsyvzn.1

Active GLP-1 data This paper Mendeley Data, V1, https://doi.org/10.17632/xyxpvsyvzn.1

Experimental models: Organisms/strains

Mouse: C57BL/6J The Jackson Laboratory RRID:IMSR_JAX:000664

Mouse: Cry1;Cry2 double KO (CDKO) Chaix et al., 2019a;

Vitaterna et al., 1999

N/A

Oligonucleotides

16 S-FWD: TCGTCGGCAGCG

TCAGATGTGTATAAGAGACAG

CCTACGGGNGGCWGCAG

This paper N/A

16 S-REV: GTCTCGTGGGCTC

GGAGATGTGTATAAGAGACA

GGACTACHVGGGTATCTAATCC

This paper N/A

Software and algorithms

BWA Li and Durbin, 2009 N/A

Qiime2 version 2020.11 Bolyen et al., 2019 https://qiime2.org

Kallisto Bray et al., 2016 N/A

MetaCycle Wu et al., 2016 https://www.r-project.org/

R version 4.1.0 R Core Team, 2021 https://www.R-project.org/

Python version 3.6.12 Python Software, 2020 http://www.python.org

Code used for data analysis This paper Mendeley Data, V1, https://doi.org/10.17632/xyxpvsyvzn.1

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Other

Resource website for microbiome data This paper https://zarrinparlab.github.io/ti_cycling_paper/

ti_16S_family_abundance.html

Resource website for transcriptome data This paper https://zarrinparlab.github.io/

ti_cycling_paper/ti_rnaseq_timepoint_expression.html
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RESOURCE AVAILABILITY

Lead contact
Requests for further information should be directed to and will be fulfilled by the lead contact, Amir Zarrinpar (azarrinpar@ucsd.edu).

Materials availability
This study did not generate new unique reagents. Samples might not be available due to small amounts obtained from mouse

experiments.

Data and code availability
d Raw sequencing data derived from RNA-seq and 16S rRNA amplicon sequencing has been deposited at the European Nucle-

otide Archive (ENA). Accession numbers are listed in the key resources table. Processed 16S and RNA-seq data, targeted me-

tabolomics data, and physiological data have been deposited to Mendeley. The DOI is listed in the key resources table. Data is

publicly available as of date of publication. This paper analyzes existing data. The source for the datasets is listed in the key

resources table.

d All original code has been deposited to Mendeley and is publicly available as of the date of publication. DOI is listed in the key

resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals and tissue collection
All animal work was approved by the Salk Research Institute IACUC. All experiments conform to current regulatory standards. Mice

were the same as described in Zarrinpar et al. (2014), with a total of 54 8-week-old, wild-type male C57BL/6 mice (Jackson Labo-

ratories, Bar Harbor, ME) subject to different diet and food access patterns for 8 weeks as previously described (Zarrinpar et al.,

2014). Mice were split into three groups: mice fed a NCD with ad libitum food access (n = 18, NA condition), a HFD with ad libitum

food access (n = 18, FA condition), or a HFD with time-restricted food access (n = 18, FT condition). Time-restricted food access

refers to restricting food access to a period of 8 hours during the dark (ZT 13–21). Normal chow (LabDiet 5001): 3.36 kcal/gm;

High-fat (TestDiet 58Y1): 5.16 kcal/gm (Zarrinpar et al., 2014). Whole body clock mutantCry1;Cry2 double KO (CDKO) were obtained

from the Sancar lab and were backcrossed to C57/B6 background >5 times. The genotype of the animals was confirmed by PCR

(Chaix et al., 2019a; Vitaterna et al., 1999). CDKO mice were kept in similar light tight boxes with ad libitum food access (n = 18,

CDKO-NA). For every 4h time point, three animals from each condition from separate cages were euthanized and whole ileum (con-

tent andmucosa) samples were collected during a 24h period for each of the 6 timepoints on the Zeitgeber time scale (ZT1, ZT4, ZT9,

ZT13, ZT17, ZT21). Samples from ileum, cecum and blood were collected and stored at�80�C until further processing. Tissue sam-

pleswere powdered throughmechanical homogenization (mortar and pestle) in liquid nitrogen. For GLP-1 experiments, 12weeks old

male C57BL/6mice (Jackson Laboratories) were fed 60%HFD (Research Diet D12492) either ad libitum or TRF (9 h of access to food

during ZT13 – ZT22) for 9 weeks. For each group, blood was collected on BP800 tubes (BD Biosciences #366420) from 2 mice per

time point every 3 hours.

METHOD DETAILS

Tissue DNA extraction and 16S amplicon sequencing
DNA was extracted from powdered tissue samples with the QIAmp DNA Stool Mini Kit (Qiagen). Sample quality and quantity was

assessed prior to preparation for 16S rRNA gene amplicon sequencing. The polymerase chain reaction (PCR) was performed as fol-

lows for amplification of the 16 S rRNA gene from ileal samples: initial denaturation at 95�C for 5 min, followed by a 31-cycles of 98�C
for 20 s; 55�C for 20 s; 72�C for 20 s, and a final extension at 72�C for 1min. All oligonucleotides utilizedwere obtained from Integrated

DNA Technologies (IDT). We performed library preparation and paired-end amplicon 16S sequencing of the ileum samples based on

the V3-V4 region using an available protocol on the MiSeq Illumina platform.
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Tissue RNA extraction and preparation for RNA-seq
Powdered tissue samples were homogenized in TRIzol Reagent (Life Technologies #15596026). RNA was isolated with PureLink

RNA mini kit (Life Technologies #12183025) according to the manufacturer’s instructions. Sample quality control and library prepa-

ration were performed by the IGM core at UC San Diego. RNA ScreenTape� was used to assess RNA quality and quantity.

Sequencing library was obtained based onmRNA. Sequencing was performed on the NovaSeq Illumina platform using 150PE reads.

Metabolic measurements
Serum from fasting animals (n = 6) at 8 weeks after diet change/intervention was used for cholesterol using Thermo Scientific Infinity

Reagents according to the manufacturer’s instructions. Meso Scale Diagnostics K150JWC kit was used to measure active GLP-1

(aGLP-1) from non-fasted serum.

Tissue bile acids
Analysis of bile acids was carried out through liquid chromatography followed by mass spectrometry (LC/MS). Bile acids were ex-

tracted from samples according to (Wegner et al., 2017). Briefly, tissue samples were homogenized and extracted in 75%methanol

(25 mg of tissue/200 mL) containing heavy internal standards. Supernatants were transferred to glass vials upon 10 minutes of vor-

texing followed by 10 min of centrifugation (16,000 3 g) at 4�C. Samples were injected and analyzed on a Dionex Ultimate 3000 LC

system (Thermo) coupled to a TSQ Quantiva mass spectrometer (Thermo) fitted with a Kinetex C18 reversed phase column (2.6 mm,

1503 2.1 mm i.d., Phenomenex). The LC solvents used consisted of two solutions: solution A - 0.1% formic acid and 20 mM ammo-

nium acetate in water; solution B - acetonitrile:methanol 3:1 (v/v) containing 0.1% formic acid and 20 mM ammonium acetate.

A reversed phase gradient at a flow rate of 0.2 mL/min was utilized, with a gradient consisting of 25–29% B in 1 min, 29–33% B

in 14 min, 33–70% B in 15 min, up to 100% B in 1 min, 100% B for 9 min and equilibrated to 25% B for 10 min, for a total run

time of 50 min. The injection volume for all samples was 10 mL, the column oven temperature was set to 50 C and the autosampler

kept at 4 C. MS analyses were performed using electrospray ionization in positive and negative ion modes, with spay voltages of 3.5

and �3 kV, respectively, ion transfer tube temperature of 325 C, and vaporizer temperature of 275 C. Multiple reaction monitoring

(MRM) was performed by using mass transitions between specific parent ions into corresponding fragment ions for each analyte.

Targets were quantified using isotopically labeled internal standards in Skyline (MacLean et al., 2010).

QUANTIFICATION AND STATISTICAL ANALYSIS

Microbiome data processing and analysis
Available raw cecal data obtained from V1-V3 16 S rRNA amplicon sequencing on the 454 platform (Zarrinpar et al., 2014) was re-

analyzed from our previous publication for comparison. Raw ileum sequencing data was obtained from V3-V4 amplicon sequencing

using the Illumina 16S metagenomic sequencing protocol. Reads were pre-filtered by mapping to the mouse genome (GRCm38.p5

release) with BWA (Li and Durbin, 2009) and removing reads (for 454 data) or read-pairs (for Illumina data) with amatch. Filtered reads

were processed using Qiime2, version 2020.11 (Bolyen et al., 2019). To dereplicate and create ASV tables and representatives, we

used the dada2 denoise-pyro plugin for the 454(cecal) samples, and the deblur 16S plugin on the forward read of the Illumina (TI)

samples, trimmed to 150bp (sequence overlap between forward and reverse readswas too low to usemerged pairs). After that, cecal

and TI samples were processed identically. We removed samples with fewer than 500 features, and features in either fewer than 2

samples, or which were annotated as unclassified, eukaryotic, mitochondrial, or plasmid. Taxonomy assignments were performed

with the sklearn feature-classifier plugin against the full-length Silva v132 precomputed model. Trees were built using the align-to-

tree-mafft-fastree phylogeny plugin. Diversitymetrics were created using the core-metrics-phylogenetic diversity plugin, rarefied to a

sampling depth of 1000. We used log-ratios to assess statistically significant differences between conditions since it takes into ac-

count reference-frames and is independent of microbial load (Morton et al., 2019b).

RNA-seq data processing and analysis
Transcript abundance was quantified using kallisto (Bray et al., 2016) with GENCODE releaseM21 (GRCm38.p6). Differential expres-

sion analysis between groups (condition and ZT) of interest was performed using DESeq2 (Love et al., 2014), with fold changes deter-

mined using the normal method for all transcripts whose counts were greater than 10 across all samples. Over-representation anal-

ysis of GO terms was performed with clusterProfiler (Yu et al., 2012).

Microbiome and transcriptome diurnal analysis
Microbiome and transcriptome cycling was determined with the JTK_CYCLE algorithm (Hughes et al., 2010) implemented in Meta-

cycle (p-value < 0.05) (Wu et al., 2016) which has been validated for 24-hour data.

Integration of host microbiome and transcriptome
Songbird was used to determine differential rankings of microbes between conditions and light vs. dark phases with a formula of

"C(condition, Treatment(’FA’)) + C(condition, Treatment(’FT’)) + C(light_dark, Treatment(’dark’))" and an optimized model with

2000 epochs, resulting in a pseudo Q-squared (1 - average absolute model error / average absolute baseline error) of 0.25 (Morton
e3 Cell Reports 40, 111008, July 5, 2022



Article
ll

OPEN ACCESS
et al., 2019b). Songbird differentials were visualized at the genus level as previously described (Allaband et al., 2021). To determine

the conditional probability that each transcript co-occurs with specific microbes, co-occurrence analysis between microbiome and

transcriptome data was carried out using the integrative omics approach mmvec (Morton et al., 2019a) as previously described (Alla-

band et al., 2021).

Statistical analysis of data
Number of samples used per time point and condition are described under ‘‘Animals and tissue collection’’ section and in the caption

of each associated figure along with statistical method used for analysis. All analyses were performed in python version 3.6.12 (Py-

thon Software, 2020) or R version 4.1.0 (R Core Team, 2021).

ADDITIONAL RESOURCES

An interactive tool that allows for exploration of additional microbiome and transcriptome data is available at https://zarrinparlab.

github.io/ti_cycling_paper/ti_16S_family_abundance.html and https://zarrinparlab.github.io/ti_cycling_paper/ti_expression.html,

respectively.
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Figure S1. Microbiota diversity of the ileum and cecum, related to Figure 1.  
A) Weight and B) blood glucose measurements from glucose tolerance test across animals 
given different diets and feeding conditions (Zarrinpar et al., 2014). Dots/line show average for 
each condition and shading areas show standard error of mean (SEM).   
C) Number of ASVs from cecum samples. 
D) Shannon ɑ-diversity of ileum samples.  
E) Microbiota diversity measures of cecum samples.  
F) Overall β-diversity across conditions in cecum samples. 
G) PCoA plot of weighted Unifrac distances. All times are ZT. 
H) Time-dependent β-diversity dissimilarity between conditions. Light and dark periods are 
represented by white and black bars, respectively. TRF food interval is represented by a yellow 
bar.  NA-FA = red; NA-FT = green. 
  



 

 
Figure S2. Microbiota composition and cycling dynamics of the ileum, related to Figure 2.  
A) Microbiota relative abundances at the phylum level across samples from different feeding 
conditions and ZT.  
B) Differential ranking between light and dark phases as determined by Songbird.  
C) Log-ratios of selected comparisons based on highest and lowest rankings from Songbird 
differentials.  
Light and dark periods are represented by white and black horizontal bars, respectively. TRF 
food interval is represented by a yellow bar. 
  



 
Figure S3. Ileal Bacterial Family Visualization Tool, related to Figure 2. View of web 
application for visualization of specific microbes in a time-dependent manner. Schematic 
representation shows how to 1) select specific transcripts of interest; 2) highlight specific 
conditions and 3) edit and save images.  
  



 
Figure S4. Over-representation of GO terms related to FA rhythmicity, related to Figure 4. 
Enriched GO terms based on genes cycling in FA only.  
  



 
Figure S5. Circadian changes in gene expression over time, related to Figure 5. Log2 fold 
change of differential expression analysis as calculated by DESeq2. Blue dots represent 
occurrences with adjusted p-value < 0.1. Open triangles represent points that are out the 
plotting window. Comparisons are shown for pairs of diet and feeding condition in each 
timepoint.   



 
Figure S6. Over-representation of GO terms related to TRF condition, related to Figure 5. 
Enriched GO terms based on differentially expressed genes (DE genes) which A) are corrected 
by FT in relation to FA or B) are specific to FT when compared to both FA and NA.  
  



 
Figure S7. Levels of gene expression and bile acids, related to Figure 7.   
A) Gene expression of transcripts involved in the GLP-1 and bile acid signaling pathways. 
Levels are expressed as transcripts per million (TPM).  
B) Unconjugated (top) and conjugated (bottom) bile acids levels in ileum samples.  
Colors represent: NA=blue; FA=red; FT=green. 
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