Circadian Rhythms in the Pathogenesis and Treatment of Fatty Liver Disease

Circadian clock proteins are endogenous timing mechanisms that control the transcription of hundreds of genes. Their integral role in coordinating metabolism has led to their scrutiny in a number of diseases, including nonalcoholic fatty liver disease (NAFLD). Discoordination between central and peripheral circadian rhythms is a core feature of nearly every genetic, dietary, or environmental model of metabolic syndrome and NAFLD. Restricting feeding to a defined daily interval (time-restricted feeding) can synchronize the central and peripheral circadian rhythms, which in turn can prevent or even treat the metabolic syndrome and hepatic steatosis. Importantly, a number of proteins currently under study as drug targets in NAFLD (sterol regulatory element-binding protein [SREBP], acetyl-CoA carboxylase [ACC], peroxisome proliferator–activator receptors [PPARs], and incretins) are modulated by circadian proteins. Thus, the clock can be used to maximize the benefits and minimize the adverse effects of pharmaceutical agents for NAFLD. The circadian clock itself has the potential for use as a target for the treatment of NAFLD.

Although the term circadian rhythms usually conjures thoughts of jet lag and sleep deprivation, physiologically, they are core cellular processes that affect every organ system. The pervasiveness of clock proteins, which are found in diverse organisms from cyanobacteria to mammals, shows their evolutionary importance to life. Development of a molecular program to anticipate and prepare for periodic, predictable changes gives a tremendous adaptive advantage. Organisms have developed specialized sensory cells that allow them to adjust their own rhythmicity to external cues (called zeitgebers—German for “time giver”). The daily light-dark cycle on Earth governs rhythmic changes in the behavior and physiology of most species, including humans. Almost all organisms consolidate their biological processes (e.g., sleeping and feeding) to particular times of day. To acknowledge that the periodicity of these oscillations stays

Keywords: Dyssynchrony; Gut Microbiome; Steatohepatitis; Lipogenesis; Bile Acids.
approximately 24 hours, Franz Halberg, a pioneer in the field of biological rhythms, introduced the term **circadian rhythms** (from Latin, *circa* meaning “about” and *diem* meaning “a day”) in 1959.

In mammals, the circadian pacemaker resides in hypothalamic structures called the *suprachiasmatic nuclei* (SCN), and it is entrained by specialized retinal ganglion cells that measure ambient light (Figure 1). However, circadian clock proteins are not restricted to the SCN. Explants from lung, liver, and other organs exhibit sustained oscillations in vitro. Thus, endogenous functional clocks are also present in peripheral tissues. Temporal signals, such as timing of food intake, can reset the hepatic clock without affecting the SCN central clock rhythms. Consequently, different entrainment signals can activate peripheral and central circadian clocks separately. However, this does not undermine the importance of the SCN in coordinating physiological processes across multiple tissues.

In this review, we will describe the molecular organization of the circadian clock proteins, the relationship between circadian clock and metabolic master regulators, and clock regulation of metabolic processes important to the pathophysiology of NAFLD. Environmental cues that entrain peripheral circadian rhythms will be also discussed in detail. The effects of circadian dyssynchrony on host metabolism will be summarized, along with recent preclinical and clinical studies showing that maintaining peripheral circadian rhythms by consolidating feeding within a narrow time frame (i.e., time-restricted feeding [TRF]) can restore metabolic health. Over the last 5 years, there have been many excellent reviews of preclinical data regarding the role of the circadian clock in hepatic metabolic processes specifically and in metabolic syndrome in general. Our review builds on this strong body of work by focusing on key regulatory pathways that play an important role in the treatment of steatohepatitis and fibrosis, thus showing the vital role of the circadian machinery in helping our understanding of NAFLD.

Molecular Organization of the Clock

The circadian clock in mammals, expressed in nearly every cell, is comprised of a series of transcription-translation feedback loops (Figure 2). These include circadian locomotor output cycles kaput (CLOCK) and brain and muscle ARNT-like 1 (BMAL1) as transcriptional activators. These are opposed by period (PER) and cryptochrome (CRY) as transcriptional repressors (Figure 3A). CLOCK and BMAL1 are two central components that make up the positive (or activation) limb of the molecular clock. The CLOCK:BMAL1 heterodimer then translocates into the nucleus to initiate transcription at the E-box (5'-CACGTG-3'), a specific DNA binding sequence on the promoters of its target genes. The main downstream targets of CLOCK:BMAL1 include their own repressors, period (PER1, PER2, and PER3) and cryptochrome (CRY1, CRY2), in addition to more than 300 other genes. Over time, PERs and CRYs accumulate in the cytoplasm, where they are further regulated by casein kinase 1 (CK1ε, CK1δ, and F-box/LRR-repeat protein 3 (FBXL3). CK1ε and CK1δ phosphorylate PER for degradation; FBXL3 promotes the degradation of CRY. However, if CK1ε phosphorylates PER after it is bound to CRY, the 3-protein complex migrates into the nucleus and inhibits the CLOCK:BMAL1 heterodimer. By inhibiting their own activators, PERs and CRYs repress the transcription of their own genes. Posttranslational modification of PERs and CRYs leads to their degradation, which then initiates a new circadian cycle with increased binding of CLOCK:BMAL1 to the now open E-box binding sites.

In a second regulatory loop, CLOCK:BMAL1 drives the transcription of the nuclear hormone receptors retinoic acid receptor-related orphan receptor (ROr) α and Rorγ and Rev-Erbα and Rev-Erbβ by binding E-box elements on their promoters (Figure 3B). Both of these receptors can bind the ROR-responsive element (RORE) promoter DNA binding sequence (5'-AGGTCA-3'), but with opposite effects: REV-ERBO/β suppresses expression at the site, whereas RORα/γ promotes expression. Together, REV-ERBs and RO Rs generate large-scale cyclic fluctuations in the transcription of hundreds of clock-controlled genes, including regulation of the transcription of Bmal1.

Recent studies have revealed an additional autonomous feedback loop involving basic helix-loop-helix family member e40 (BHLHE40; more commonly, DEC1) and BHLHE41 (more commonly, DEC2), which also suppress CLOCK:BMAL1 activity (Figure 3C). CLOCK:BMAL1 induces transcription of Dec1 and Dec2 by binding E-box elements on their promoters. Unlike PERs and CRYs, which act directly on the CLOCK:BMAL1 heterodimer, DECs compete with CLOCK:BMAL1 for the E-box, thus suppressing all E-box genes, including transcription of their own genes and those of PERs and CRYs.

Other circadian clock-controlled genes bring additional refinement to this complex interplay of feedback loops. CLOCK:BMAL1 modulates the expression of hundreds of other genes by promoting the transcription of D-box binding protein (DBP) by binding E-box elements on its promoter (Figure 3D). DBP rhythmically activates transcription of genes that have D-box elements in their promoter regions. Nuclear factor interleukin 3 (NFIL3, also E4BP4), which is regulated by a RORE promoter region (and thus is susceptible to activation by RO Rs and suppression by REV-ERBs), represses DBP-dependent transactivation by competing for the D-box. Computational genomic analysis of D-box elements has identified nearly 1500 regions that can be recognized by DBP and NFIL3.

The transcription-translation feedback loops generate large-scale rhythms in the activities and levels of downstream clock-controlled genes. Because these processes are temporally controlled, it is important to regulate the abundance and activity of each component to ensure that it is in the right place at the right time. This is achieved by posttranslational modifications of clock components, such as phosphorylation, acetylation, SUMOylation (Small Ubiquitin-like Modifier proteins; [SUMO can modify the function of other proteins by attaching/detaching from them]), O-GlcNAcylation (O-Linked β-N-acetylglucosamine; O-GlcNAc is an intracellular carbohydrate that can modify protein activity), and ubiquitylation. Gene
expression studies show that approximately 10%–40% of the rodent genome exhibits a 24-hour rhythm in a highly tissue-specific manner. However, humans are diurnal animals that feed during the day, whereas most rodents are nocturnal animals that feed primarily at night. The recent publication of a transcriptome atlas of a baboon, a diurnal primate, shows that the aforementioned percentages from rodent studies do not convey the full picture. Of the approximately 11,000 genes that are commonly expressed in all tissues in the baboon, 96.6% have 24-hour rhythmicity in at least 1 tissue. Greater than 80% of the 18,000 protein-coding baboon genes were circadian. More importantly, more than 80% of the genes encoding proteins targeted by pharmaceuticals are transcribed cyclically. This implies that most physiological processes are under circadian control, and thus, the disruption of circadian rhythms can result in widespread downstream pathology.

The Circadian Clock Regulates Metabolic Processes

Hepatic metabolic processes, including glucose, lipid, and cholesterol/bile acid metabolism, are highly dynamic, influenced by feeding/fasting and circadian rhythms. Data supporting these relationships come from several lines of research, including metabolic phenotyping data from circadian clock genetically modified mouse lines, molecular biology studies showing direct interactions between regulators of nutrient homeostasis and circadian clock proteins, and the relationship of feeding/fasting cycles and metabolic gene expression. In this section, we discuss the relationship between circadian clock machinery and various aspects of metabolism that are dysfunctional in patients with NAFLD.

Circadian Clock and Regulators of Nutrient Homeostasis and Autophagy

The liver contains several master metabolic regulators that sense feeding/fasting states and control the expression of hundreds of downstream metabolic targets. These include adenosine monophosphate (AMP)-activated protein kinase (AMPK), cyclic AMP (cAMP) response element-binding protein (CREB), v-Akt murine thymoma viral oncogene homolog 1 (AKT/PKB), and sirtuin 1 (SIRT1). All have cyclic activity mainly driven by feeding behavior and can regulate—and are regulated by—circadian clock proteins.

AMPK, a fasting-sensitive protein kinase that regulates cellular energy homeostasis, can modulate, and is modulated by, the circadian clock machinery. AMPK can affect the length of circadian cycling by phosphorylating CRY and targeting it for degradation. Moreover, RORs activation can modulate lipid metabolism and prevent hepatic steatosis by activating AMPK, which controls key lipid regulators (discussed later in the article). Feeding, on the other hand, activates CREB, which up-regulates Per1 transcription. This relationship connects G protein–coupled receptors, which use cAMP as a second messenger, with the circadian clock machinery through CREB activation. In addition, CRYs can independently suppress CREB, thereby not only affecting hepatic gluconeogenesis but also modulating Per transcription. Finally, AKT, a protein kinase activated by feeding that regulates glucose metabolism, among other cellular processes (eg, cell proliferation and apoptosis), can modulate the circadian clock machinery by phosphorylating BMAL1 and CLOCK in the cytosol and preventing their translocation across the nuclear membrane.

Sensing the nutrient status is a critical regulation step in the maintenance of homeostasis. Metabolic stressors such as starvation induce autophagy to use glycogen and lipid components for generating fuel. Circadian induction of autophagy during low nutrient states (eg, inactive state) allows efficient coordination of these cellular processes. AMPK, under glucose starvation conditions, phosphorylates and activates the autophagy-initiating kinase ULK1 (Unc-51 like autophagy activating kinase 1), thus promoting autophagy. However, under nutrient sufficiency, mammalian target of rapamycin (mTOR), another metabolic master regulator, phosphorylates ULK1 and disrupts its interaction with AMPK, thus inhibiting autophagy. Interestingly, liver-specific Bmal1-null mice display dampened rhythms of autophagy gene expression, along with increased mTOR activation. Thus, autophagy has
multiple layers of regulation from metabolic regulators and the circadian clock.

SIRT1, an anti-aging and nutrient-sensing protein, can up-regulate the expression of a number of genes involved in autophagy and energy metabolism by binding to the E-box elements in a complex with the CLOCK:BMAL1 heterodimer. This complex in particular creates daily oscillations in nicotinamide phosphoribosyltransferase, which is the rate-limiting enzyme in the nicotinamide adenine dinucleotide (NAD\(^+\)) salvage pathway, thus inducing circadian oscillation of intracellular NAD\(^+\). SIRT1 can further act on circadian clock proteins by deacetylating BMAL1 and PER2, as well as other key metabolic regulators, through its regulation of NAD\(^+\). SIRT1 histone deacetylation leads to a repressive chromatin configuration, essentially down-regulating their downstream targets. As a result of SIRT1 interaction with CLOCK:BMAL1 and deacetylation of key regulator proteins, these genes have day-night rhythmicity to their transcriptional activity and temporal regulation of their target genes. Thus, the role of autophagy in the pathogenesis of NAFLD is well described and makes these pathways a target for therapeutic interventions.

Circadian Clock and Glucose Homeostasis

Glucose metabolism is regulated by the circadian clock machinery. The relationship between circadian changes in metabolically important hormones (ie, glucocorticoids, insulin, ghrelin, incretins, adiponectin, and leptin) and ambient light provided the initial clues that the central clock plays an important role in glucose and nutrient homeostasis. Moreover, these hormones can directly affect the circadian clock in their target cells. Insulin is a regulator of Per2 and Rev-erba, and both glucose and insulin can affect the expression of Dec1 and Dec2. Low glucose/fasting induction of AMPK can repress the cryptochromes, as described in the previous section. Thus, the relationship between the circadian clock and glucose homeostasis is bidirectional.

Of particular interest, incretins, which are already the target of pharmaceuticals approved by the US Food and Drug Administration aimed to treat type 2 diabetes (T2D)
Figure 3. Circadian clock machinery. (A) In mammals, the core molecular clock comprises a series of transcription-translation feedback loops that include the transcriptional activators (CLOCK and BMAL1). The CLOCK:BMAL1 heterodimer regulates genes at a specific DNA binding sequence, the E-box, to regulate expression of hundreds of genes, including their own repressors (Per1, Per2, Per3, Cry1, and Cry2). Once translated, PERs and CRYs accumulate in the cytoplasm, where they are regulated by CK1ε/δ and AMPK, respectively. If these PERs or CRYs are individually phosphorylated, they will undergo ubiquitylation (Ub) and proteasomal degradation. However, if PER and CRY form a heterodimer before phosphorylation by CK1ε/δ, the 3-protein complex is transported to the nucleus, where it directly inhibits the CLOCK:BMAL1 heterodimer. (B) CLOCK:BMAL1 also regulates the expression of REV-ERBs and RORs. Once translated, REV-ERBs and RORs bind to the RORE DNA binding sequence, but with opposite effects. RORs promote, whereas REV-ERBs suppress, at this DNA binding sequence. Together, these clock proteins control the regulation of hundreds of genes, including the expression of Bmal1. (C) A third loop of the circadian clock involves DEC1 and DEC2, which are transcriptionally activated by CLOCK:BMAL1. DEC1 and DEC2 proteins migrate back into the nucleus and inhibit Per1 transactivation by competing for E-box binding. (D) CLOCK:BMAL1 promote the transcription of Dbp, and REV-ERB/ROR regulate the expression of Nfil3. Once translated, DBP and NFI3 promote or suppress, respectively, gene expression at the D-box DNA binding sequence. The D-box DNA binding sequence controls the expression of hundreds of clock-controlled genes.
and obesity, are being investigated as therapeutic agents in NAFLD. Glucagon-like peptide 1 (GLP-1), an incretin secreted by the intestinal L cells located primarily in the ileum, is an insulin sensitizer. GLP-1 release correlates with the pattern of insulin secretion, showing an increase immediately preceding the feeding period. Thus, GLP-1 contributes to the decrease in blood sugar levels by enhancing glucose-dependent insulin secretion. Patients with NAFLD display diminished concentrations of active incretins. Release of GLP-1 is circadian in rodents and humans, and this rhythmicity is lost with the consumption of a high fat/palmitate diet and sleep deprivation. Knockdown of Bmal1 or Clock results in impairment of insulin release from β-cells in response to exendin-4. Thus, circadian clock control of glucose-modifying hormones is not limited to the hypothalamic-pituitary axis.

Circadian clock machinery regulates glucose at a cellular level as well. Glucose homeostasis is altered in nearly all transgenic lines where the circadian clock is perturbed. The liver-specific Bmal1-knockout (KO) mice helped elucidate the relationship between circadian clock and GLUT2, the main hepatic glucose transporter. Expression of Glut2 in mice is characterized by the peak and trough of expression corresponding to the inactive/daytime and active/nighttime states, respectively. This homeostatic stage is disrupted with loss of Bmal1, which results in constitutively low expression of both transcript and protein levels of Glut2. Hepatocyte-specific deletion of Bmal1 in mice led to fasting hypoglycemia, hypoinsulinemia, and loss of rhythmicity in the expression of hepatic glucose metabolic genes. The influence of the circadian clock is not limited to glucose transport. BMAL1 also regulates the expression of Pgc1α (peroxisome proliferator-activated receptor-gamma coactivator 1α), a coactivator of gluconeogenesis. Hepatic glycogenesis is controlled by CLOCK through transcriptional activation of glycogen synthase 2 (Gys2), the rate-limiting enzyme in glycogen synthesis. The increased expression of Gys2 is temporally timed with the surge of postprandial glucose. Clock-mutant mice display severe disturbed feeding rhythms and glucose dysregulation (ie, hyperglycemia, hypoinsulinemia). In addition, negative mutations in Clock and Bmal1 lead to impaired gluconeogenesis.

Per1/Per2 double-KO mice have severe hypoglycemia in the fasting/inactive period and impaired glucose tolerance. Cry1/Cry2 double-KO mice also show glucose intolerance with elevated circulating corticosterone levels. CRYs are transcriptional repressors that regulate gluconeogenic enzymes through the repression of glucocorticoid receptors and CREB. Not all circadian clock transgenic mice have unfavorable glucose homeostatic responses. Mice with liver-specific KO of Rorγ are protected against insulin resistance and hyperglycemia. Incidentally, Rorγ-KO mice are also protected against diet-induced hepatic steatosis. Likewise, mice with hepatic overexpression of Cry1 had normoglycemia and improved insulin sensitivity in response to dietary challenge. These findings have bolstered the argument for therapeutic agents targeting circadian clock components as potential therapeutic targets for T2D and NAFLD.

Circadian Clock and Lipid and Bile Acid Homeostasis

In addition to glucose homeostasis, the circadian clock regulates lipid and bile acid metabolism. This includes regulatory transcription factors such as peroxisome proliferator-activated receptors (PPARs) and sterol regulatory element-binding proteins (SREBP) 1c (lipid metabolism) or rate-limiting enzymes such as acetyl-CoA carboxylase (ACC) (fatty acid biosynthesis) and cholesterol 7 alpha-hydroxylase (CYP7A1) (cholesterol and bile acid metabolism). Dysfunction in these regulatory pathways is part of the pathophysiology of NAFLD.

One of the main reasons for lipid accumulation in the hepatocytes of patients with NAFLD is dysregulation of de novo lipogenesis. SREBP1c is one of several transcription factors that can drive the induction of lipogenic genes. Overexpression of SREBP1c in the liver is associated with a 2-fold increase in alanine aminotransferase, aspartate aminotransferase, hepatic triglyceride levels, and serum free fatty acids. Transgenic mice that overexpress SREBP1c displayed a fatty liver phenotype along with hyperglycemia and hyperinsulinemia. The activity of this regulator is dependent on the fasting-feeding cycle and nutritional status. However, more recent studies show that SREBP1c, and its targets, are also regulated by the circadian clock machinery. SREBP1c transcripts, as well as protein levels, display daily rhythmicity. This rhythmicity is also reflected in the binding pattern of SREBP1c to some of its canonical target genes. SREBP1c is regulated by BMAL1, REV-ERBα, RORα, RORγ, and DEC1. For example, REV-ERBα can control hepatic cholesterol and lipid metabolism through the controlled expression of Insig2 (insulin-induced gene 2) which is an inhibitor of SREBP1c.

Cyp7a1, the gene for the rate-limiting enzyme that converts cholesterol to bile acids, is also regulated by the circadian clock and expressed cyclically. REV-ERBα and DBP regulate its transcription. Per1/Per2 double-KO mice have abnormal expression of Cyp7a1 and other key bile acid enzymes, suggesting that they have at least indirect regulation of bile acid synthesis. Moreover, Cyp7a1 transcription is regulated by hepatic farnesoid X receptor (FXR) and small heterodimer partner (SHP), as well as fibroblast growth factor (FGF) 15/19, which is released as a result of FXR activation in the ileum. Fxr and Shp transcription (and thus, also transcription of Fgf15/19) are also clock-gated. FXR agonists, such as obeticholic acid, are currently being investigated as potential therapeutic agents for NAFLD. Finally, it should be noted that BMAL1 can further influence triglyceride metabolism through PGC1α regulation of Fxr, further showing the circadian clock’s multiple layers of regulatory control. Altogether, the cyclic activity of CYP7A1 and its regulating enzymes generates circadian fluctuation of serum and fecal bile acids, which has implications for lipid absorption and microbiome composition.
<table>
<thead>
<tr>
<th>Mouse strain</th>
<th>Diet/intervention</th>
<th>Liver phenotype</th>
<th>Δ Glucose</th>
<th>Δ Insulin</th>
<th>Δ Serum triglycerides</th>
<th>Δ Weight</th>
<th>Δ Adiposity</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rev-erbα KO + Hepatic Reverb β KO</td>
<td>NCD</td>
<td>Marked hepatic steatosis with deficiency of both Rev-erbs, but only subtle changes with loss of either subtype alone</td>
<td>↓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>177</td>
</tr>
<tr>
<td>Rev-erbα KO</td>
<td>NCD</td>
<td>Higher hepatic TG levels (trend)</td>
<td>↑</td>
<td>↑</td>
<td>↔</td>
<td>↑</td>
<td>↑</td>
<td>178</td>
</tr>
<tr>
<td></td>
<td>HFD (53% fat)</td>
<td>Higher hepatic TG levels (trend)</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td></td>
</tr>
<tr>
<td>Per1/2 KO</td>
<td>NCD</td>
<td>Lower hepatic TG levels, depending on what time of day they were eating (oscillating)</td>
<td>↑</td>
<td>↔</td>
<td>↓</td>
<td>↑</td>
<td>↑</td>
<td>179</td>
</tr>
<tr>
<td>Cry1/2 double KO</td>
<td>NCD</td>
<td>Hepatic steatosis</td>
<td>↑</td>
<td>↔</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>HFD (45% fat)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bmal1 KO</td>
<td>NCD</td>
<td>Hepatic steatosis in global (not tissue specific) Bmal1-KO mice, but not in control mice</td>
<td>↑</td>
<td>↓</td>
<td></td>
<td></td>
<td></td>
<td>181</td>
</tr>
<tr>
<td></td>
<td>HFD (60% fat)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ClockΔ19 KO</td>
<td>NCD</td>
<td>Lipid engorgement of hepatocytes in Clock-KO mice compared with WT</td>
<td>↑</td>
<td>↔</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>HFD (45% fat)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ClockΔ19 KO</td>
<td>NCD</td>
<td>Normal</td>
<td>↔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>182</td>
</tr>
<tr>
<td></td>
<td>HFD</td>
<td>Lower hepatic TGs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mPer2−/− KO</td>
<td>NCD and CCl4</td>
<td>Increased hepatic fibrosis in KO mice</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>183</td>
</tr>
<tr>
<td>Rev-erbα KO (and HDAC3 KO)</td>
<td>NCD</td>
<td>Increased hepatic TGs/steatosis in KO mice</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>184</td>
</tr>
</tbody>
</table>

NOTE. An upward arrow denotes an increase compared to control. A downward arrow denotes a decrease compared to control. A bidirectional arrow denotes no change compared to control. A lack of an arrow denotes that a comparison was not performed.

CCl4, carbon tetrachloride; GTT, glucose tolerance test; ITT, insulin tolerance test; NCD, normal chow diet; TGs, triglycerides; WT, wild type.
Another important regulator of lipogenesis that participates in clock-controlled metabolic processes is ACC. Phosphorylation and inactivation of ACC is driven by feeding and follows a 24-hour rhythm.11,93 Circadian clock regulation of AMPK (eg, with ROR\textalpha) represses ACC and provides temporal control of lipogenesis.34 Mice with liver-specific deletion of ACC1 exhibit lowered accumulation of hepatic triglycerides and decreased de novo fatty acid synthesis.94 Similarly, ACC2-KO mice fed a high-fat, high-carbohydrate diet display lower body weight and less epididymal fat compared with wild-type mice.35 Recently, an allosteric inhibitor of ACC1/2 showed promising liver-specific effects, including decreased lipogenesis, hepatic steatosis, and improved insulin sensitivity.96

Genes involved in lipid metabolism and lipogenic processes are regulated by PPARs, a class of ligand-activated transcription factors.97 PPAR\textalpha-KO mice fed a high-fat diet (HFD) accumulate more hepatic triglycerides and show a much higher NAFLD Activity Score.98,99 Conversely, activation of PPARs with fenofibrate (PPAR\gamma) and rosiglitazone (PPAR\textgamma) leads to amelioration of certain parameters of NAFLD, including decreased alanine aminotransferase and aspartate aminotransferase levels, steatosis, and inflammation in both mouse and clinical studies. Several randomized controlled trials have shown improvement in liver inflammation in both diabetic and nondiabetic patients with pioglitazone, another PPAR\textgamma agonist.100–102 BMAL1 and CLOCK transcriptionally regulate the circadian rhythmicity of Ppara. PPAR\alpha, in turn, directly binds to PPAR response elements on the Bmal1 promoter and promotes its expression in a positive feedback loop.103,104 In addition, PPAR\alpha directly interacts with PER2 in hepatic tissue to modulate transcription of their target genes.105 Because PPARs are highly circadian proteins, it is unclear whether dosing at different times of day can alter the bioavailability and effectiveness of the drug in treating NAFLD.

Circadian Clock and Endoplasmic Reticulum Stress

One of the major functions of the endoplasmic reticulum (ER) is to facilitate the correct folding of proteins. In addition, the ER is the site of lipid synthesis in hepatocytes.106 Stressors such as changes in redox states or high-protein demands lead to an accumulation of unfolded or misfolded proteins, ultimately leading to ER stress. The risk of ER stress is higher at certain times of the day; thus, many of its regulatory proteins are under circadian control. As an adaptation response, the unfolded protein response (UPR), along with its component proteins, such as inositol-requiring enzyme 1\alpha (IRE1\alpha), is triggered to restore cellular homeostasis.107,108 The UPR plays a critical role in the pathogenesis of NAFLD.109–111 In mice, UPR-regulated genes exhibit a biphasic 12-hour periodicity, which is driven by circadian clock control of IRE1\alpha and XBP1 (X-box binding protein 1), a UPR master regulator.112 In arrhythmic Ccy1/Ccy2 double-KO mice, hepatic Irex1a is constitutively expressed, suggesting that this pathway is under clock control. These mice also had perturbed levels of hepatic and serum triglycerides.112

Finally, the ER-associated transcription factor hepatocyte-specific CREB (CREBH) regulates stress-related lipogenesis and fatty acid oxidation in mice.113–115 CREBH is an important mediator of the circadian oscillator in the liver and exhibits rhythmicity in its proteolytic cleavage but not at the messenger RNA level, indicating that the circadian clock regulates it through posttranslational modification.115,116 CREBH is regulated indirectly by BMAL1 and AKT, and its activity is modified by DBP and NFIL1.3,116,117 Mice with CREBH deficiency have reduced levels of genes involved in fatty acid metabolism. These mice display hypertriglyceridemia and increased fatty acids, and they are more susceptible to diet-induced hepatitis and hepatic fibrosis, whereas CREBH activation protects against steatosis.118–120

Luminal Content Entrain Hepatic Clock

The SCN functions as the master pacemaker and is sensitive to light signals but largely unresponsive to feeding patterns. On the other hand, the peripheral clock in the liver is dependent on feeding pattern for the amplitude and phase of the oscillation of its transcripts.4,121 Restricting feeding in mice to only the daytime (when they normally sleep) results in a phase shift between the central and peripheral clocks.120 Recent studies show that feeding is a stronger driver of rhythmic gene expression than circadian clock proteins, with 70% of hepatic transcripts losing rhythmicity under arrhythmic feeding.122 Thus, feeding is an important cue (ie, zeitgeber) for hepatic circadian clock function. It should be noted that the impetus for feeding comes from the hypothalamus, where the SCN is located. Therefore, dysynchrony in feeding and light cycles can be considered root disorders of the SCN/hypothalamus.12

The gut microbiome is widely recognized for its importance in regulating metabolic physiology and as playing an important role in the pathophysiology of metabolic syndrome and NAFLD.123–125 Recent studies show that the gut microbiome can contribute to dysmetabolism by disruption of epithelial and hepatic circadian rhythms. Although the gut microbiome is not exposed to light, it exhibits cyclic variations that are closely intertwined to host gene expression, feeding pattern, and sex.126–130 Indeed, circadian disruption induced by jet lag,126 genetic mutation of host circadian genes,126–128 or diet126,129,130 are associated with disruptions in microbe-host circadian dynamics that can result in increased adiposity, insulin resistance, and inflammation.12 Luminal secondary (bacterially-produced) metabolites show cyclic rhythms over a 24-hour period.126,127,129 The cyclic variation of the bacterial taxa is one of the most robustly reproducible characteristics of the gut microbiome in murine models.131 However, the cyclic dynamics of the human gut microbiome have been difficult to study. Nevertheless, salivary samples collected over a 24-hour period132,133 and analysis of stool microbiome collected at different times134,135 suggest that the human microbiome is also highly dynamic.

Gut microbes can drive host circadian rhythms.12,125 Germ-free mice, antibiotic-induced microbiome-depleted
mice, or mice who lose cyclic oscillation of their gut microbiome through dietary interventions lack hepatic and intestinal circadian rhythms.129,136 Circadian variation of the gut microbiome can cyclically activate luminal toll-like receptors (TLRs).136 During the rest phase, intestinal TLRs are inactive, and there is an increase in the transcription factor PPAR\(\alpha\), which promotes the transcription of Rev-Erb\(\alpha\). During the active phase, TLRs respond to bacterial proteins and suppress Ppara transcription. With microbiome depletion, TLRs are less activated, and both PPAR\(\alpha\) and REV-ERB\(\alpha\) are elevated, regardless of time. Although others have reported an increase in TLR expression137 and no changes in Ppara expression137,138 likely because of differences in antibiotic-depletion protocols, the observation that REV-ERB\(\alpha\) does not cycle in microbiome-depleted mice has been reproduced in multiple studies.138,139 The circadian relationship between the gut microbiome and REV-ERB\(\alpha\) was recently reproduced in another study investigating the effect of the microbiome on the circadian clock.139 Cyclic expression of REV-ERB\(\alpha\) leads to cyclic transcription of Nfil3 (see Figure 3D). Nfil3 can regulate body composition through circadian expression of the intestinal lipid metabolic program, regulating lipid absorption and its export from intestinal epithelial cells.139 Germ-free and antibiotic-treated mice have low expression of Nfil3 and, thus, much lower body lipid absorption.

Although these studies show a relationship between cyclic fluctuations of the gut microbiome and the circadian machinery of the host intestinal epithelial cells, it is not clear which microbially derived mediators are responsible for changes in hepatic oscillations and, thus, metabolic functions. Two potential mediators are bile acids and short-chain fatty acids (SCFAs) (Supplementary Figure 1).125 As discussed earlier, bile acids and key enzymes in their production and uptake are cyclically expressed and regulated by circadian clock genes.129 Although incompletely characterized, secondary bile acids can affect intestinal and hepatic circadian gene expression in vivo.141 Increased expression of bile salt hydrolase, a bacterial enzyme that deconjugates bile acids and allows for the production of secondary bile acids, induces a shift in ileal and hepatic circadian gene expression in microbiome-depleted mice.142 Moreover, sleep disruption, altered feeding pattern, and circadian gene KOs alter the expression of key bile acid regulatory genes.129,143 Cecal SCFAs have cyclic fluctuations that are perturbed with a HFD.129 Although the mechanism is incompletely understood, supplementation with SCFAs can cause changes in Bmal1 and Per2 gene expression. Interestingly, Bmal1-KO mice lose cyclic fluctuation of their fecal SCFAs.143 Overall, these studies suggest a reciprocal interaction between the circadian clock and luminal bile acids and SCFAs.

Dyssynchrony and Metabolic Syndrome

Synchrony between the SCN and hepatic circadian clock temporally organizes the expression of a large number of metabolic regulatory genes to the daily pattern of food availability. In the absence of a robust hepatic circadian clock, the organism becomes susceptible to various metabolic disorders, including increased adiposity, ectopic steatosis, and insulin resistance.12 Genetically modified mouse lines affecting various clock genes show the interconnectedness between circadian rhythms and metabolic regulators. Circadian gene transgenic lines nearly universally have perturbed metabolic phenotypes (eg, insulin resistance, increased adiposity) (Table 1).12 Moreover, nearly all dietary-induced dysmetabolic mouse models have perturbed feeding patterns, often characterized by the loss of discrete meals and the spread of caloric intake throughout the day and night.12 Thus, circadian dyssynchrony, characterized by phase shifts and dampening of circadian gene oscillations that lead to misalignment of peripheral and central circadian rhythms, is common to nearly all models of metabolic syndrome, including NAFLD.

Murine Models

Efforts to decipher the mechanistic relationship between circadian clock and host metabolism have been quite fruitful, especially over the last two decades. In general, decreased expression of the clock genes in the positive limb result in worse metabolic outcomes. Conversely, decreased expression of the negative limb (see Figure 2) clock genes leads to improved metabolic outcomes and protection from hepatic steatosis. A summary of selected studies of clock transgenic mice and their metabolic characteristics are presented in Table 1. Environmental stressors, such as changes in diet, sleeping pattern, or lighting conditions, can also cause circadian dysynchrony. For example, in the diet-induced obesity (DIO) model—where mice are given an HFD and develop increased adiposity, hyperlipidemia, steatosis, and insulin resistance—mice spread their caloric intake throughout the day and night, thereby doubling the percentage of food eaten during the day/inactive period.144 This altered feeding pattern causes a disruption of the hepatic circadian clock. Leptin-KO (Ob/Ob) mice, a genetic model of obesity characterized by hyperphagia due to leptin deficiency, also have dampened oscillation of their circadian clock before weight gain.145,146 In addition to feeding, changes to light (eg, light at night) or disruption of sleep in mice also leads to dysmetabolic states characterized by increased features of metabolic syndrome, including steatosis.16

Human Studies

As in mice, human studies show a strong relationship between the circadian dysynchrony and dysmetabolism. Genetic studies have been instrumental in showing this relationship. Haplotype analysis of patients with NAFLD showed an association between steatosis and CLOCK, where gene variants have a potential role in the susceptibility, pathogenesis, and disease progression.147 A similar study reported the putative role of CLOCK polymorphisms, which were associated with a 1.8-fold increase in susceptibility to obesity.148 SNPs in CLOCK have also been associated with metabolic syndrome, hypoglycemia, obesity, and T2D.149 Genome-wide association studies provide strong evidence for the role of circadian gene variants in susceptibility to
Table 2. Selected Studies Investigating Associations Between Sleep or Food Behaviors and Metabolic Syndrome or NAFLD

<table>
<thead>
<tr>
<th>Article</th>
<th>Study type</th>
<th>Population</th>
<th>Control</th>
<th>Comparator</th>
<th>Key findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selected studies investigating associations between sleep disturbance or TRF and metabolic syndrome</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wang et al (2014)</td>
<td>Meta-analysis of 13 observational studies</td>
<td>Workers exposed to night shift (N = 2286)</td>
<td>Day workers</td>
<td>Shift workers</td>
<td>Higher risk of metabolic syndrome in workers exposed to night shift (OR, 1.5–1.6).</td>
</tr>
<tr>
<td>Vyas et al (2012)</td>
<td>Meta-analysis of 9 case-control studies, 11 prospective cohort studies, and 6 retrospective cohort studies</td>
<td>Workers exposed to shift work (N = 2,000,000)</td>
<td>Day workers</td>
<td>Shift workers</td>
<td>Shift work is associated with an increased risk of myocardial infarction and coronary events (OR, 1.23).</td>
</tr>
<tr>
<td>Karlsson et al (2001)</td>
<td>Observational study</td>
<td>Working adults (N = 27,485)</td>
<td>Day workers</td>
<td>Shift workers</td>
<td>OR of obesity was approximately 1.3 higher in shift workers compared with day workers.</td>
</tr>
<tr>
<td>Wilkinson et al (2019)</td>
<td>Paired-sample trial</td>
<td>Patients with metabolic syndrome (N = 19)</td>
<td>2-week baseline of eating interval of ≥14 h per day</td>
<td>12-weeks of time-restricted eating (TRE) to a 10-hour interval</td>
<td>After 12 weeks of TRF, there was a 3% reduction in weight (P = .0003), 11% reduction in LDL-C (P = .016), and 8% reduction in estimated calorie intake (P = .007) but no difference in insulin resistance (P = .107).</td>
</tr>
<tr>
<td>Selected studies investigating associations between sleep disturbances and/or shift work and NAFLD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hsieh et al (2011)</td>
<td>Observational</td>
<td>All-male Tokyo office workers (N = 8157)</td>
<td>Sleep >7 hours</td>
<td>Sleep <7 hours</td>
<td>Rates of NAFLD were higher in patients who slept <7 hours (OR, 1.23).</td>
</tr>
<tr>
<td>Kim et al (2013)</td>
<td>Observational</td>
<td>Workers and spouses at a Korean conglomerate (N = 69,463)</td>
<td>Sleep >5 hours</td>
<td>Sleep <5 hours</td>
<td>Rates of NAFLD were higher among women (but not men) who slept <5 hours (OR, 1.59 in women; 1.03 in men).</td>
</tr>
<tr>
<td>Imaizumi et al (2015)</td>
<td>Observational studies</td>
<td>General patients (N = 3986)</td>
<td>Sleep duration 6 to ≤7 h</td>
<td>Sleep duration ≤6 hours</td>
<td>Rates of NAFLD were higher among women (but not men) who slept ≤6 hours (OR, 1.44 in women; 0.98 in men).</td>
</tr>
<tr>
<td>Bernsmeier et al (2015)</td>
<td>Case-control study</td>
<td>Cohort in Basel (N = 68)</td>
<td>Healthy volunteers (n = 22)</td>
<td>Biopsy-proven NAFLD group (n = 46)</td>
<td>NAFLD group had shorter sleep duration and poorer sleep quality compared with control group (P < .01). In patients with NAFLD, but not in control individuals, daytime sleepiness was correlated with higher liver enzyme levels and insulin resistance.</td>
</tr>
<tr>
<td>Marin-Alejandre et al (2019)</td>
<td>Cross-sectional study</td>
<td>Fatty Liver in Obesity participants in Spain (n = 134)</td>
<td>Normal-weight individuals without NAFLD (n = 40)</td>
<td>Overweight patients with NAFLD (n 9 4)</td>
<td>Patients with NAFLD with fibrosis had stronger correlation to daytime sleepiness (P = .02).</td>
</tr>
<tr>
<td>Liu et al (2016)</td>
<td>Cohort study</td>
<td>Patients who developed NAFLD after 5 years of follow-up (n = 2197)</td>
<td>Sleep duration 8–9 hours, sleep duration >9 hours</td>
<td>Sleep duration of 7–8 hours</td>
<td>Adjusted odds of sleep disturbance was higher in NAFLD group (OR, 1.59).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Regression models predicted approximately 20% of variability in liver stiffness could be attributed to sleep disturbance or sleep quality.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Adjusted odds of NAFLD was higher with longer sleep durations (OR, 1.21 for the 8–9-hours group; 1.31 in >9 hours group).</td>
</tr>
</tbody>
</table>
Table 2. Continued

<table>
<thead>
<tr>
<th>Study type</th>
<th>Population</th>
<th>Comparator</th>
<th>Control</th>
<th>Population</th>
<th>Comparator</th>
<th>Control</th>
<th>Key findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observational study</td>
<td>General workers (n = 8159)</td>
<td>Non-shift workers</td>
<td>Shift workers</td>
<td>Mediterranean lifestyle (active period)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Randomized controlled trial</td>
<td>Patients with NAFLD (n = 63)</td>
<td>Patients with NAFLD (n = 55)</td>
<td>Control individuals</td>
<td>Optimal sleep duration was inversely associated with NAFLD presence (OR, 0.38; P < .05).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case-control study</td>
<td>Control individuals (n = 12)</td>
<td>Control individuals without NAFLD (n = 20)</td>
<td>Patients with OSA with NAFLD</td>
<td>OSA was associated with a 27% lower insulin sensitivity compared with control individuals.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selected studies</td>
<td>Patients with OSA (n = 108)</td>
<td>Patients with OSA (n = 5)</td>
<td>Patients with OSA without NAFLD</td>
<td>OSA was associated with nonalcoholic steatohepatitis (OR, 2.37) and advanced fibrosis (OR, 2.3) in patients with biopsy-proven NAFLD.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LDL-C, low-density lipoprotein cholesterol; N/A, not applicable; OR, odds ratio; OSA, obstructive sleep apnea.

Correction of Dyssynchrony With Time-Restricted Feeding

It was not clear until recently whether correcting circadian dyssynchrony is sufficient to reverse the dysmetabolic effects of these various insults. TRF, a behavioral paradigm where feeding is consolidated to the active period, aligns peripheral and central circadian rhythms.\(^\text{151}\) Correction of circadian dyssynchrony with TRF prevents and treats the metabolic consequences of a large variety of insults.\(^\text{12,152-155}\) It should be noted that TRF is not synonymous with intermittent fasting; the former is focused on aligning peripheral and central circadian rhythms. When applied to human populations, the number of calories consumed is irrelevant in the time-restricted diet, which is part of its appeal. Intermittent fasting, on the other hand, focuses on creating periods of fasting, usually on alternate days, to induce changes to metabolism. Caloric intake is strictly regulated on fasting days.

Mice in the TRF condition have access to food only in the nocturnal (active) phase, which promotes natural feeding rhythms and restores the amplitude and phase of oscillations of peripheral circadian clock genes, which are obliterated in DIO mice.\(^\text{151}\) TRF also restores cycling of metabolic regulators (eg, AMPK, mTOR, and CREB) and their downstream targets. The metabolic effects of restoring synchrony can be profound. Although TRF mice consume the same number of calories and have similar activity levels, they do not have the dysmetabolic phenotype of DIO mice. TRF prevents and treats the increased adiposity, insulin and leptin resistance, steatohepatitis, and dyslipidemia that occur with the DIO condition.\(^\text{130,151,156,157}\) Subsequent studies show that TRF protects against the metabolic effects of a variety of dysmetabolic diets, including the Western diet, high-fructose, and high-sucrose diets.\(^\text{156}\)

TRF also protects against the dysmetabolism induced by circadian gene KOs. Per1-, hepatic Bmal1-, hepatic Rev-Erbα/
β-, and Cry1/Cry2-KO mice all have dysmetabolic phenotypes when given free access to HFD. In all cases, TRF prevented the dysmetabolic phenotype. TRF reduces hepatic steatosis and enhances the cellular response to metabolic stress. Hence, the benefits from TRF likely arise from restoring daily feeding/fasting rhythms and balancing nutrient absorptions with cellular stress response. TRF also protected against the dysmetabolic phenotypes due to aging, obesity, and central circadian rhythm dysfunction in Drosophila.158,159 Contrary to popular belief, instead of consuming three distinct meals, humans consume calories sporadically and over a large range of time within a 24-hour period.160 Thus, TRF could potentially be an easily adoptable behavioral intervention that improves outcomes in patients with metabolic syndrome who have irregular eating habits. Several small-scale human TRF studies have shown interesting although sometimes contradictory results. In one randomized crossover trial, healthy volunteers were first assigned to either a standard diet of three meals per day or to receive one meal in the evening, both without caloric restriction.161 The two groups did not have a difference in the number of calories consumed. The group with one meal a day had higher morning fasting plasma glucose levels and a delayed insulin response in an oral glucose tolerance test. A different study compared healthy male participants consuming a standard diet of three meals per day with a group with TRF in the afternoon to evening. In this case, the TRF group had decreased fat mass, without any difference in triglycerides, total cholesterol, or low-density lipoprotein.162 A subsequent randomized, supervised controlled feeding trial in humans showed that participants in the early TRF group had improved insulin sensitivity, appetite, and blood pressure but had higher levels of triglycerides and total cholesterol.163 A more recent study aimed to compare early vs late TRF among men at risk for T2D (monitored with continuous glucose monitors) found that the early-TRF group had lower mean fasting glucose, whereas both TRF groups had an improvement in glucose response to meals.164 However, it is not clear whether the investigators controlled for the length of time the participants were fasting during their sample collection, necessitating additional larger studies. A recent study investigated the effects of TRF on patients with metabolic syndrome undergoing pharmacotherapy. In this single-arm, paired-sample trial of 19 patients who had an initial eating window of >14 hours and were undergoing statin or anti-hypertensive therapy, imposing a 10-hour feeding window (monitored with continuous glucose monitors) led to improved cardiometabolic health. Although these studies are promising, a study investigating the effects of TRF on NAFLD endpoints has not yet been conducted.

Conclusion

NAFLD is a complex disease that is associated with a multitude of metabolic perturbations.7,165 Because many circadian clock-controlled genes are vital participants in metabolic processes of the body, it is not surprising that some of these rhythmic genes can be potential targets for therapy. Behavioral interventions, such as TRF, may have benefits in NAFLD that are independent of its weight loss effects. TRF may be easier for patients to adopt because it does not restrict calories or require a specific macronutrient dietary profile.160

Chemical modulators of clock-regulated processes such as bile acid metabolism (FXR agonist obeticholic acid, FGF15/19 analogue NGM282), incretin response (GLP-1 receptor agonist liraglutide), and PPAR-controlled lipogenic mechanisms (PPARα activator elafibranor) are under various stages of the clinical trial process.11,166,167 However, because some components of the core clock directly participate in metabolic processes and the oscillator itself is responsive to resetting stimuli, small molecules directed toward clock components might provide alternative targets for therapeutic intervention.47,166 In this light, administration of compound KL001, an activator of CRY proteins, improved glucose tolerance in DIO mice.169,170 This is consistent with the known role of CRYs in the inhibition of gluconeogenesis.75 Recent studies show that CRY1 is targeted for degradation by autophagy, thus depressing hepatic gluconeogenesis in a temporal manner.9 Further research into these sites on CRY1 might direct researchers toward novel drug targets for the treatment of hyperglycemia and insulin resistance. Nobiletin, a drug that enhances the amplitude of Ror expression, prevents weight gain and improves metabolic parameters in DIO and Ob/Ob mice.171,172 Additionally, treatment with REV-ERB agonists SR9009 and SR9011 led to improved metabolic endpoints in DIO mice.173,174 These drugs could potentially be beneficial in NAFLD.

Furthermore, the circadian clock extends its functional network to the control of global physiological processes, including the targets of nearly all drugs affecting metabolic syndrome spectrum disorders.175 The rhythmicity imparted by the circadian clock in drug metabolic and detoxification processes can be a potential target for the treatment of NAFLD.16,11 By better accounting for the circadian cycling of their targets, new drugs can be administered in a way that maximizes benefits, and minimizes adverse effects, potentially arriving at a therapeutic dose with fewer administrations and lower dosages.176 Further study of the chronopharmacology and circadian xenobiotics of small-molecule therapeutics might provide better insight into the proper temporal profile and contribute to improved efficacy.

Supplementary Material

Note: To access the supplementary material accompanying this article, visit the online version of *Gastroenterology* at www.gastrojournal.org, and at https://doi.org/10.1053/j.gastro.2020.01.050.

References

104. Inoue I, Shinoda Y, Ikeda M, et al. CLOCK/BMAL1 is involved in lipid metabolism via transactivation of the peroxisome proliferator-activated receptor (PPAR)}

May 2020

140. Lavery DJ, Schibler U. Circadian transcription of the cholesterol 7 alpha hydroxylase gene may involve the liver-enriched bZIP protein DBP. Genes Dev 1993;7:1871–1884.

172. He B, Nohara K, Park N, et al. The small molecule nobiletin targets the molecular oscillator to enhance...

Supplementary Figure 1. The gut microbiome and peripheral circadian rhythms. The gut microbiome can modulate peripheral circadian rhythms through several known mechanisms. It can do so through secondary metabolites, such as SCFAs and bile acids, and/or directly through TLRs. DCA, deoxycholic acid; HDCA, hyodeoxycholic acid; HCA, hyocholic acid; LCA, lithocholic acid; MCA, muricholic acid; TCDCA, taurochenodeoxycholic acid; TCA, taurocholic acid; UDCA, ursodeoxycholic acid.