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SUMMARY

The gut microbiome and daily feeding/fasting cycle
influence host metabolism and contribute to obesity
and metabolic diseases. However, fundamental
characteristics of this relationship between the
feeding/fasting cycle and the gut microbiome are un-
known. Our studies show that the gut microbiome is
highly dynamic, exhibiting daily cyclical fluctuations
in composition. Diet-induced obesity dampens the
daily feeding/fasting rhythm and diminishes many
of these cyclical fluctuations. Time-restricted feeding
(TRF), in which feeding is consolidated to the
nocturnal phase, partially restores these cyclical
fluctuations. Furthermore, TRF, which protects
against obesity and metabolic diseases, affects bac-
teria shown to influence host metabolism. Cyclical
changes in the gut microbiome from feeding/fasting
rhythms contribute to the diversity of gut microflora
and likely represent a mechanism by which the gut
microbiome affects host metabolism. Thus, feeding
pattern and time of harvest, in addition to diet, are
important parameters when assessing the micro-
biome’s contribution to host metabolism.

INTRODUCTION

The gut microbiome plays an important role in host metabolic

homeostasis (Tremaroli and Bäckhed, 2012). However, the

mechanistic basis for this metabolic effect is not well under-

stood. Transcriptional activity in intestinal epithelial cells (IECs)

is highly dynamic, characterized by cyclical gene expression

that is responsive to feeding and to the host’s central circadian

clock (Scheving, 2000). Whether the gut microbiome exhibits

similar fluctuations has not yet been investigated. Character-

izing this feature of the gut microbiome is necessary to better

understand the relationship it may have with other drivers of

host metabolism.

Obese humans and mice have gut microbiomes that are

different from their lean controls (Turnbaugh et al., 2006, 2008,

2009a). In particular, obesity is associated with a reduction in

bacteria from the Bacteroidetes phylum and an increase in bac-

teria from the Firmicutes phylum. Metagenomic analysis of the
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obese microflora shows that it is enriched for genes associated

with lipid and carbohydrate metabolism (Turnbaugh et al.,

2009a). Although it initially appeared that obesogenic microbiota

(i.e., Firmicutes) contribute to obesity by harvesting more energy

from the diet, more recent studies have challenged this notion.

A high-fat diet (HFD) can increase Firmicutes in the gut micro-

biome without altering host metabolism, suggesting that many

observed shifts in the microflora result from dietary changes

and may not have metabolic consequences (Hildebrandt et al.,

2009; Murphy et al., 2010). Human studies investigating the ratio

of Firmicutes and Bacteroidetes have yielded inconsistent re-

sults (Duncan et al., 2008; Ley et al., 2005; Schwiertz et al.,

2010). More comprehensive analyses of the gut microbiome

suggest that changes in the gut microbiome at the subphylum

level (and involving a limited number of species) could account

for metabolic changes observed between different cohorts (Co-

tillard et al., 2013; Le Chatelier et al., 2013; Zhang et al., 2009).

Previous studies in murine models have shown that age (Mur-

phy et al., 2010), host genetics (Henao-Mejia et al., 2012), and

diet (Hildebrandt et al., 2009; Murphy et al., 2010) can affect

the composition of the gut microbiome. Long-term ecological

studies of the gutmicrobiome have revealed longitudinal stability

(Faith et al., 2013; Lozupone et al., 2012; Yatsunenko et al.,

2012). This has led to the hypothesis that early gut colonizers,

likely acquired from parents, play a vital role in determining the

composition of the host microbiota and the physiological and

metabolic fate of the host (Faith et al., 2013). However, longitudi-

nal consistencies in gut-microbiome composition are strongly

associated with long-term dietary patterns (Wu et al., 2011a). A

change in diet can shift the composition of the gut microbiome

rapidly, often within 24 hr, in both humans and mice (David

et al., 2014; Turnbaugh et al., 2009b; Wu et al., 2011a). Finally,

there is an intimate relationship between the gut microbiome

and host IEC circadian regulators. This is exemplified by micro-

biome perturbations in phase-shifted mice (Voigt et al., 2014)

and IEC circadian gene dysregulation with antibiotic-inducedmi-

crobiome depletion (Mukherji et al., 2013). This suggests a far

more dynamic environment than previously thought.

Since the relationship between the gut microbiome and

metabolism is unclear, and dietary changes lead to rapid shifts

in its composition, we sought to determine whether the gut mi-

crobiome is affected by cyclical fluctuations in feeding. Natural

feeding and fasting cycles result in a fluid gut milieu in terms of

nutrients, pH, and secondary metabolites, but it is unclear

whether the gut microbiome is similarly dynamic, and if so

whether this dynamism plays a role in host metabolism.
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Figure 1. Study Design and Metabolic Studies of Mice in Each Condition

(A) Study design. NA mice had ad libitum access to normal chow. FA mice had ad libitum access to HFD. FT mice had 8 hr access (ZT13–ZT21) to HFD. Results

from our previous study were replicated (Hatori et al., 2012).

(B) Line plot showing the average weekly weight (g ± SEM) of mice in different conditions (n = 24 per condition). FA mice gained weight, whereas FTmice, despite

being on a HFD, were indistinguishable from NA controls. *p < 0.05 (compared to NA).

(C) Intraperitoneal glucose tolerance tests (mean ± SEM) show that TRF was protective against diabetes (n = 6 per condition). *p < 0.05 (compared to NA).

(D) On gross inspection, FA livers had steatosis, whereas FT livers did not.

(E) Serum quantification of cholesterol (n = 6 per group). Measurements (mean ± SEM) were performed twice. *p < 0.05 (compared to NA and FT).
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RESULTS

Mice Fed Normal Chow Ad Libitum Exhibit Cyclical
Fluctuations in Phyla within the Gut Microbiome
We fed 12-week-old male wild-type C57BL/6 mice a normal

chow or a HFD for 8 weeks. These mice were allowed ad libitum

access to food or were subjected to time-restricted feeding

(TRF; Figure 1 and see Figure S1 available online). To assess

the stability of the gut microbiome within a 24 hr period, mice

were sacrificed every 4 hr and metagenomic DNA was extracted

from the cecal contents. We then sequenced 16S rRNA and

createdmicrobial community profiles by clustering 16S rRNA se-

quences into operational taxonomic units (OTU; R97%

sequence match) and used the Ribosomal Database Project

classifier (with a threshold R80% bootstrap value) to assign se-

quences to taxonomic groups. Across mice in all conditions, we

identified 298 OTUs (Table S1, Table S2, and Table S3).

Mice with ad libitum access to normal chow (NA mice; Fig-

ure 1A) have a cyclical feeding pattern, eating most of their diet

during their nighttime active phase and less during their daytime

inactive phase (Hatori et al., 2012; Kohsaka et al., 2007; Liu et al.,

2014). In order to determine whether a particular phylogenetic

group was cyclical, we used JTK analysis, a nonparametric

test that detects cycling elements (Hughes et al., 2010). In order

for an OTU to be considered cyclical, its adjusted, permutation-

based p value (ADJ.P) and Benjamini-Hochberg q values (BH.Q)

both had to be less than 0.05. In NAmice, 17%of detected OTUs

were cyclical (Figure 2A). Cyclical changes in the gutmicrobiome

were apparent for all major phyla (ADJ.Ps are 2.03 10�6 for Fir-

micutes, 0.019 for Bacteroidetes, and 2.93 10�6 for Verrucomi-
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crobia; Figures 2B and 2C). The proportion of Firmicutes species

peaked during nocturnal feeding and bottomed out during day-

time fasting, with a peak-to-trough ratio of 3:1 in NA mice. Bac-

teroidetes and Verrucomicrobia species peaked during daytime

fasting and bottomed out during nocturnal feeding (Figures 2B

and 2C). At any point in time, 20%–83% of the reads belonged

to OTUs that cycled. For NA animals, OTU peaks were not

restricted to a particular time of day. They were distributed

across all the time points, but with a gradual rise after feeding

(Figure S2A). A majority of OTUs that cycled in NA mice (80%)

were underrepresented in HFD microbiomes (p < 2.0 3 10�4;

Figures S2B and S2C).

HFD Dampens the Cyclical Fluctuation of Phyla within
the Gut Microbiome
Mice that have ad libitum access to HFD (FA mice; Figure 1A)

spread their caloric intake, feeding during the dark/active phase

and the light/inactive phase (Hatori et al., 2012; Kohsaka et al.,

2007; Liu et al., 2014). They were obese (Figure 1B) and had

dysfunctional glucose homeostasis (Figure 1C), gross steatosis

(Figure 1D), and hypercholesterolemia (Figure 1E). FA mice had

fewer OTUs on 16S rRNA sequencing compared to NAmice (Fig-

ure S2D; see also Figure 5C), and fewer of these OTUs were

cyclical (Figures 2D, S2E, and S2F). Interestingly, phylum-level

cyclical changes observed in NA mice were dampened and did

not approach significance in FA mice (ADJ.Ps are 0.03—but

BH.Qwas 0.08—for Firmicutes, 0.24 for Bacteroidetes, 1 for Ver-

rucomicrobia; Figure 2E). The peak-to-trough ratio of Firmicutes

species in FA mice was 1:1. Unlike NA mice, the maximum per-

centage of reads that belonged to cycling OTUs at any time point
olism 20, 1006–1017, December 2, 2014 ª2014 Elsevier Inc. 1007
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Figure 2. Diurnal Rhythms of Gut Microbiome Phyla in Mice from Different Feeding Conditions

(A) Pie chart showing the percentage of cycling and noncycling OTUs (across all conditions) in NA mice (n = 18).

(B) Upper double-plot line graph—where the second cycle is a duplicate of the first cycle following the dashed line—shows the average percent read (±SEM) of

the threemost predominant phyla at each time point (n = 3 per time point). Black andwhite boxes indicate light off and light on, respectively. The yellow box shows

when mice had access to food. Colored asterisks at the end of lines in line graph showwhich phyla were cycling based on JTK analysis (that is, ADJ.p < 0.05 and

BH.Q. < 0.05). Since it takes >1 hr for a food bolus to reach the cecum (Padmanabhan et al., 2013), lower bar graphs show the average percent reads (±SEM, n = 9)

for the dark/active feeding phase (ZT17, ZT21, and ZT1), and the light/inactive fasting phase (ZT5, ZT9, and ZT13). *p < 0.05.

(C) The top ten cyclical OTUs (based on percent reads) are depicted in a polar plot. The radian indicates the phase of the OTU’s peak, the distance from center is

the average percent read across all time points, and the radius of each point indicates the amplitude of cycling. The colors of the circles indicate the phylum of the

OTU: Firmicutes (pink), Bacteroidetes (blue), and Verrucomicrobia (green). The black arc on the left side of the plot indicates the light/dark cycle. The yellow arc

depicts access to food. The bottom polar plot shows a magnified view of the inner ring (10%) of the top polar plot.

These descriptions also apply to panels for FA mice (D–F) and FT mice (G–I).
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was 30%, and Firmicutes species were dominant at every time

point (Figure 2F).

In a previous study (Hatori et al., 2012) we showed that using

TRF to impose a natural feeding rhythm on mice fed a HFD (FT

mice; Figure 1A) protects against diet-induced obesity and other

metabolic disorders associated with FA mice. We replicated

this finding in the current study (Figures 1B–1E). TRF provides

an ideal backdrop for studying intestinal microflora, because

FT mice consume (1) the same nutritional quality as FA mice,

and (2) the same caloric quantity as NA mice (Figures S1A

and S1B) (Hatori et al., 2012). In FT mice, therefore, microbiome

differences that have metabolic consequences (e.g., obesity

protective or obesogenic) are not obscured by alterations in

nutritional/dietary intake. To better understand the relationship

between cyclical fluctuations in the gut microbiome and diet,

feeding phase, and metabolism, we expanded the study to

include the FT condition.

FT mice had fewer OTUs compared to NA mice (Figure S2D;

see also Figure 5C). Like FA mice, FT mice had fewer cycling

OTUs than NA mice (Figures 2G, S2E, and S2G), and phylum-

level cyclical changes were diminished (ADJ.Ps are 1 for Firmi-

cutes, 0.06 for Bacteroidetes, and 1 for Verrucomicrobia; Fig-

ure 2H). Unlike NA and FA mice, peaks in cycling OTUs in FT

mice were related to the feeding schedule, occurring several

hours after foodwas given or at the end of the fasting period (Fig-

ure S2G). Unlike NA mice and similar to FA mice, the maximum

percentage of reads that belonged to cycling OTUs at any time

point was 27%, and each time point was dominated by Firmi-

cutes species (Figure 2I).

Species from the Firmicutes, Bacteroidetes, and Verrucomi-

crobia comprisedR98% of the reads in all three conditions. An-

alyses of other phyla revealed cyclical activity for Actinobacteria

species only in the FA condition (ADJ.Ps are 0.09 for NA, 6.5 3

10�4 for FA, 0.60 for FT; Figure S2H). In contrast, Proteobacteria

species did not cycle, comprising less than 0.1% of reads in

most mice (ADJ.Ps are 1 for NA, FA, and FT; Figure S2I).

Subphylum Analysis Reveals Dynamic Gut Microbiomes
in All Conditions
To further characterize differences between mice in three condi-

tions, we performed subphylum analyses of the gut microbiome,

focusing on classes, families, and genera. These analyses re-

vealed further differences between NA mice and those in the

HFD conditions. In NA mice Bacilli species were cyclical

(ADJ.p = 5.0 3 10�3) with a peak that occurred after feeding

(peak-to-trough 7:1; Figure 3A). On average across all time

points, these species were significantly more prevalent in the

gut microbiome of mice in the HFD conditions than in the NA

mice (6.4% ± 1.4% versus 2.9% ± 1.4%, respectively; p <

0.05). Unlike the NA condition, Bacilli were not cyclical in the

two HFD conditions (ADJ.p = 1 for both FA and FT).

In addition, NAmice had a lower percentage of Clostridia spe-

cies compared to the FA and FT conditions (35.2% ± 10.0%,

83.4% ± 4.0%, 90.9% ± 3.0%, respectively; one-way ANOVA,

p < 0.0001; Figure 3B). Clostridia as a phylogenetic class was

cyclical in the NA condition, with a peak-to-trough of 9:1, but

not in either of the HFD conditions (ADJ.P is 3.3 3 10�5 for NA,

0.45 for FA, 0.03—but BH.Q was 0.08—for FT). In both the NA

condition and the FT condition, Clostridia were more prevalent
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in the dark/active phase than in the light/inactive phase (for

NA, 49.1% ± 9.6% versus 21.3% ± 8.3%, p < 0.05; for FT,

95.4% ± 1.0% versus 86.4% ± 3.6%, p < 0.05; Figure 3B).

Firmicutes species within the gut microbiome of NA mice

belonged predominantly to the class Erysipelotrichia, which

was far less common in the gut microbiome of mice fed the

HFD, especially the FT condition (NA, 33.4% ± 10.4%; FA

7.6% ± 2.3%; FT, 1.1% ± 0.5%; one-way ANOVA, p < 0.0003;

Figure 3C). This phylogenetic class was only cyclical in the FT

condition (ADJ.p = 2.03 10�6), where it was 12 timesmore prev-

alent in the light/inactive phase than in the dark/active phase

(1.95% ± 0.63% versus 0.17% ± 0.05%, p < 0.05; Figure 3C).

In contrast to the analysis at the phylum level, subphylum anal-

ysis revealed that the microbiome of FT mice was distinct from

that of FA mice. Although species in the Firmicutes phyla (and

the Bacilli and Clostridia classes) dominated the gut micro-

biomes of both HFD cohorts, the families and genera were quite

dissimilar, with differences in percent reads and cyclical activity

(Figures 3D, S3, and 4A–4D). Many microfloral differences be-

tween FA and FT mice involved families and genera previously

hypothesized to play roles in metabolism. Four of these will be

discussed in greater detail.

TRF Decreases Relative Amounts of Presumed
Obesogenic Microflora and Increases Relative Amounts
of Presumed Obesity-Protective Microflora
The relationship between several Lactobacillus species and

obesity, as well as associated metabolic disorders, has been

studied extensively (Joyce et al., 2014; Li et al., 2013; Million

et al., 2012, 2013; Raman et al., 2013). In particular, a decrease

in Lactobacillus species protects against metabolic disorders

associated with obesity, perhaps by altering bile acids in the

lumen (Li et al., 2013). In both NA and FT mice, the Lactobacillus

genera were cyclical, whereas in FA mice they were not (ADJ.Ps

are 4.2 3 10�6 for NA, 1 for FA, 1.2 3 10�5 for FT; Figure 4A).

Furthermore, Lactobacillus species comprised a lower percent-

age of reads in FTmice compared to the combined ad libitum co-

horts (0.97% ± 0.49% versus 3.70% ± 1.01%, respectively, p <

0.05; Figure 4A). However, since the percentage reads were

similar between FA and NAmice, it is likely that the temporal pro-

file of these species, rather than the relative abundance, exerts

greater influence on host metabolism. In particular, FA mice

had a higher amount of Lactobacillus species during the dark/

active phase compared to FT mice (3.62% ± 1.49% versus

0.06% ± 0.04%, respectively, p < 0.05; Figure 4A).

Previous studies have shown that the amount of Lactococcus

species directly correlates with body fat percentage in mice

consuming a high-fat/high-sugar diet (Parks et al., 2013). We

have shown that FA mice have a much higher body fat percent-

age than NA mice, but body fat percentages are similar between

FT and NAmice (Hatori et al., 2012). Consistent with previous re-

sults, the current study shows that Lactococcus species were

barely detectable in the gut microbiome of NA mice at any time

points and were much higher in the FA mice (NA, 0.00% ±

0.00%; FA, 1.81% ± 0.69%; FT, 0.43% ± 0.15%; one-way

ANOVA, p < 0.0001; Figure 4B). FT mice had a significantly lower

percentage of Lactococcus species in their gut microbiome than

FA mice did (Figure 4B). Lactococcus was only cyclical in the FA

mice (ADJ.p = 4.9 3 10�3). In particular the main difference in
olism 20, 1006–1017, December 2, 2014 ª2014 Elsevier Inc. 1009
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Figure 3. Subphylum Analysis of the Gut Microbiome in the Three Conditions

Diurnal activity of several Firmicutes classes including (A) Bacilli, (B) Clostridia, and (C) Erysipelotrichia. Line graphs (left) show a double-plot of percent reads

(±SEM, n = 3 per time point) for a particular class from all three conditions. Conditions are color coded (see legend). Colored asterisks at the end of lines in line

graph show which conditions were cycling based on JTK analysis. Bar graphs (top right in each panel) show percent total reads (±SEM, n = 18) for a particular

class in each condition averaged over all time points. Histogram (bottom left of each panel) shows percent reads (±SEM, n = 9) that are expressed when light off/

light on. Histogram (bottom right of each panel) shows percent reads (±SEM, n = 9) that are expressed when food from nighttime feeding has reached the cecum

(ZT17, ZT21, and ZT1) and during relative fasting (ZT5, ZT9, and ZT13; see Figure 2 and Padmanabhan et al., 2013). *p < 0.05.

(D) Stacked bar graphs showing average percent reads of each family that comprised >5% of total reads for each condition.
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Lactococcus species between FA and FT is the amount found

during the light/inactive phase. The percent reads of Lactococ-

cus species were significantly higher in the FA mice than in the

FT ones (2.66% ± 0.84% versus 0.45% ± 0.16%, respectively;

p < 0.05), but not during the dark/active phase (0.96% ±

0.34% versus 0.41%± 0.15%, respectively; p = 0.16; Figure 4B).

High relative levels of Oscillibacter and other Ruminococca-

ceae species protect against obesity and nonalcoholic fatty liver

disease (Raman et al., 2013). Here we found a significantly higher

percentage of Oscillibacter species in FT gut microflora than we

did in FA mice (0.40% ± 0.08% versus 0.13% ± 0.04%, respec-

tively; p < 0.05, Figure 4C). The relative reads of Oscillibacter

species were cyclical in NA, but not in FT or FA mice (ADJ.Ps

are 2.1 3 10�4 for NA, 1 for FA, 0.09 for FT; Figures 4C and

S4A). Furthermore, Ruminococcaceae species comprised a

higher percentage of reads in FT mice compared to FA mice
1010 Cell Metabolism 20, 1006–1017, December 2, 2014 ª2014 Else
(6.69% ± 1.03% versus 3.96% ± 0.42%, respectively; p <

0.05; Figure 4D). Ruminococcaceae were highly cyclical in NA

mice, but not in FT and FA mice (ADJ.Ps are 3.3 3 10�5 for

NA, 1 for FA, 0.09 for FT; Figure 4D). TRF increased the relative

amounts of Ruminococcaceae species in the dark/feeding time

of FT mice, which was significantly higher than the relative

amounts in the FA mice during the same time points (8.79% ±

1.64% versus 4.15%± 0.71%, respectively; p < 0.05; Figure 4D).

Relative reads for some of the other bacterial genera in NA, FA,

and FT mice are shown in Figure S3.

Principle component analysis of NA mice revealed that the

ZT9 gut microbiome was quite distinct from gut microbiomes

measured at any other time point (Figure 4E). Time within a

24 hr light:dark cycle is reported as Zeitgeber time (ZT), or

‘‘time since lights on,’’ where ZT0 is when the light turns on/

dawn and ZT12 is when the light turns off. By definition, ZT9 is
vier Inc.
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9 hr after lights have been on (and 3 hr before the nocturnal

feeding bout begins). After NA mice had commenced nighttime

feeding, the composition of their microbiomes at ZT13 shifted

toward the FA microbiome. In NA mice, feeding changed the

gut microbiome so dramatically that some time point clusters

were more different from each other than they were from the

FA gut microbiome (e.g., compare ZT9 and ZT17; Figure 4E).

Principle component analysis of FA and FT gut microbiomes

showed clusters that were not as dramatically different. Since

Lachnospiraceae species accounted for >50% of the reads in

both FA and FT mice (Figure S3), these species accounted for

much of the observed variance in these cohorts (Figure S4B).

However, concerning second and third principle components,

the FA and FT conditions exhibited some degree of separation

(Figure 4F). FT gut microbiome clusters were similar to FA gut

microbiome clusters during fasting. During feeding, however,

the FT clusters deviated from the ‘‘baseline’’ FA clusters. This

suggests that if the gut microbiome directly affects metabolism

in FT mice, this impact likely occurs during a narrow window of

time.

GutMicrobial Ecology Is Dynamic in the GutMicrobiome
of Mice in NA and FT Condition
Dysbiosis, as a result of HFD, leads to alterations in microbiome

ecology, particularly reductions in diversity (Ley et al., 2005;

Turnbaugh et al., 2009a). Reduced diversity, particularly a-diver-

sity (i.e., the types and relative amounts of species within a sam-

ple; intrasample diversity), is thought to play a significant role in

host metabolism and global increase in obesity (Lozupone et al.,

2012), but it is unclear whether changes in microbial diversity

result from changes in the nutritional composition of the diet or

from cyclical changes in luminal content.

We observed that the a-diversity of the gut microbiome of NA

mice varied widely. There were usually higher levels of diversity

during nighttime feeding and lower levels during daytime fasting

(Figure 5A). However, gut microbiome a-diversity for FA and FT

mice remained constant, withoutmuch temporal fluctuation (Fig-

ure 5A). Although NA and FT mice had significantly higher vari-

ance in their a-diversity compared to FA mice (Bartlett’s test

for equal variance, p = 6.0 3 10�4), when all time points were

averaged together there were no significant differences between

the three conditions (NA, 21.70 ± 5.08; FA, 15.73 ± 0.81; FT,

18.75 ± 1.40; one-way ANOVA, p = 0.41; Figures 5A and 5B).

a-diversity can be affected by species richness (i.e., the num-

ber of unique species/OTUs) and the abundance of each

species. Across all time points, NA mice had significantly higher

species richness compared to the two HFD conditions (NA,

165.2 ± 11.6; FA, 122.7 ± 2.7; FT, 126.2 ± 4.5; p = 0.009;

Figure 5C). Levels of richness for FT and FA mice were indis-

tinguishable (Figure 5C). These results were confirmed using a

rarefaction curve analysis (Figure 5D). However, although the

rarefaction curves of the averaged FA and FT samples appeared

similar, there wasmuchmore variability in species obtained from

different time points. For example rarefaction plots of FT sam-

ples from ZT21 and ZT9 were remarkably different from each

other. These plots were also different from plots obtained from

FA mice at the same time points (Figure S5A). Rank-abundance

analysis of samples obtained from FA, FT, and NA suggests that

the main cause of the rise in the variability of FT a-diversity was
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an increase in the relative abundance of species, rather than an

increase in the number of species (Figure 5E).

Differences in b-diversity (i.e., the measure of dissimilarity be-

tween two samples; intersample diversity) were also measured.

We first analyzed the difference between the gut microbiome of

mice subjected to the same condition, but at different time points

(i.e., within-condition; Figure 5F). The within-condition b-diver-

sity was significantly different between all three conditions

(NAvNA, 0.845 ± 0.010; FAvFA, 0.581 ± 0.008; FTvFT, 0.625 ±

0.009; one-way ANOVA, p < 0.0001). This indicates that the NA

gut microbiome undergoes dramatic temporal fluctuations

compared to the HFD conditions (Figures 5F and S5B). Further-

more, the gut microbiome of FT mice also experience significant

fluctuations when compared to those of the FA mice. Dissimi-

larity between NA gut microbiomes and those of the FA and FT

condition (i.e., outside condition) was nearly as high as that

measured for the NA within-condition dissimilarity (NAvFA,

0.946 ± 0.002; NAvFT, 0.949 ± 0.002; FAvFT, 0.632 ± 0.006;

one-way ANOVA, p < 0.0001; Figures 5G and S5B).

Changes in the Gut Microbiome Are Accompanied by
Changes in Stool Metabolites
It is unclear how cyclical (or TRF-induced) variation in the gut mi-

crobiome affects host metabolism. To better understand the

specific effects of the gut microbiome, we analyzed stool metab-

olites that are altered by gut microbes (not by host enzymes)

from dark/feeding and light/fasting cages. Pooled stool was

collected from fresh nighttime and daytime cages from each

condition. Samples were analyzed for specific metabolites.

We first investigated stool metabolites that would suggest that

FA and FT mice extract different amounts of energy from chow.

Hemicellulose, which is a component of the plant cell wall, is a

nonabsorbable complex sugar present in both normal and HFD

murine chow. It is normally broken down into more absorbable

sugars, xylose and galactose, with the aid of cellulase enzymes

from gut bacteria. FT mice excreted significantly more xylose,

but there was no difference in the stool collected in the light

and dark periods (Figure 6A). FT also excreted more galactose,

with a significantly higher amount excreted in the stool collected

during the light period (Figure 6B). Thus, FT mice excreted rather

than absorbed these calories. NA mice excreted much higher

amounts of xylose and galactose than FA and FT mice (Fig-

ure S6A). However, it is difficult to perform direct comparisons

between mice fed normal or HFD chow, since the diets contain

different amounts of hemicellulose.

Another way in which the gut microbiome may affect host

metabolism is through altering luminal bile acid signaling (Mat-

subara et al., 2013; Sayin et al., 2013). Fecal/stool bile acids

are structurally complex, and this complexity is driven by micro-

bial species within the intestinal tract (Hagey and Krasowski,

2013). We therefore assessed stool bile acids from mice in the

three conditions. More primary bile acids were found in FT

mice compared to NA and FA mice (Figures 6C and S6B).

Furthermore, there tended to be more secondary and tauro-

conjugated bile acids in FT mice compared to NA and FA

mice, although these trends were not significant (Figures 6C

and S6B). Hence, alterations in the gut microbiome of FT mice

led to increased excretion of bile acids, and likely increased

concentrations of bile acids within the gut lumen. High levels
olism 20, 1006–1017, December 2, 2014 ª2014 Elsevier Inc. 1011
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Staphylococcus
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Clostridium XI

Figure 4. TRF Restores Cyclical Fluctuation in Genera Thought to Be Involved in Metabolism

Diurnal activity of (A) genus Lactobacillus, (B) genus Lactococcus, (C) genus Oscillibacter, and (D) other genera in the Ruminococcaceae family. For each, there is

a double plot of percent reads (± SEM, n = 3 per time point) for the three conditions. Colored asterisks at the end of lines in line graph showwhich conditions were

cycling based on JTK analysis. For (C), the NA condition is excluded from the line plot but can be seen in Figure S4A. This is followed by a histogram of percent

total reads (±SEM, n = 18) that this genus comprises in each condition, a histogram of percent reads (±SEM, n = 9) that are expressedwhen light off/light on, and a

(legend continued on next page)
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Figure 5. Diversity Analysis of Gut Microbiomes at Different Time Points

(A) Shannon effective species (a-diversity or intrasample diversity; ±SEM, n = 3 per time point) for each condition and time point.

(B and C) (B) Box-and-whisker plot of Shannon effective species (a-diversity) and (C) richness averaged across all time points (n = 18).

(D–G) (D) Rarefaction and (E) rank-abundance curves of average reads (n = 18 per condition). Dissimilary (b-diversity) of (F) samples within the same condition

(except those from the same time point), and (G) samples from different conditions. In all box plots, whiskers show minimum and maximum, the box is the 25th–

75th percentile, and the line is the median. *p < 0.05.
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of bile acids in FT mice could affect metabolism through luminal

bile acid signaling.

DISCUSSION

Previous studies have shown long-term stability of the gutmicro-

biome, although variation driven by age, diet, and the environ-

ment has also been reported (Faith et al., 2013; Lozupone

et al., 2012). This long-term stability has been tempered with

recent evidence that the gut microbiome rapidly changes when

the diet is altered (David et al., 2014; Turnbaugh et al., 2009b).

Here we have shown that the gut microbiome exhibited daily

cyclical variation in a variety of dietary and feeding pattern con-

ditions, with the assumption that the changes in the gut micro-

biome are similar to those in host gene expression to make

24 hr a sufficient amount of time to assess circadian changes.

Of note, during the review of this manuscript, another group

also reported diurnal changes in the mammalian gut microbiome

(Thaiss et al., 2014).
histogram of percent reads (±SEM, n = 9) that are expressed when food from nigh

fasting (ZT5, ZT9, and ZT13; see Figure 2 and Padmanabhan et al., 2013).

Genera-based principle component analysis (PCA) of NA and FA mice (E) and of

accounted for most of the variability. In (F), dotted lines show trend line of FA and

populations).
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NA mice showed cyclical fluctuation in the composition of the

gut microbiome. Firmicutes species were most abundant with

feeding during the dark/active phase and reached their low point

with fasting during the light/inactive phase. Conversely, Bacter-

oidetes and Verrucomicrobia species rose during fasting and fell

during feeding. These cyclical fluctuations in specific members

of the gut microbiome were accompanied by changes in the di-

versity of the microflora environment. The a-diversity of the gut

microbiome fluctuated with the time of day and was highly vari-

able, rising with feeding and falling with fasting. The wide fluctu-

ations between time points were confirmed with significantly

higher b-diversity between NA samples taken at different time

points.

Mice given ad libitum access to a HFD (a model of diet-

induced obesity) lose diurnal feeding (Hatori et al., 2012; Koh-

saka et al., 2007). As a consequence, their gut microbiome con-

tained half as many cycling OTUs, and cycling OTUs comprised

less of the overall gut microbiome. Firmicutes species, particu-

larly of the Clostridia order, dominated the gut microbiome of
ttime feeding has reached the cecum (ZT17, ZT21, and ZT1) and during relative

FA and FT mice (F). Green vectors show the axis where that particular genus

FT mice in the PCA, which are significantly different (p < 0.05 by ANOVA of two

olism 20, 1006–1017, December 2, 2014 ª2014 Elsevier Inc. 1013
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Figure 6. Metabolites Processed by Gut Microbes Are Differentially Excreted in the Feces of Mice in Different Conditions

Average relative quantification of (A) xylose and (B) galactose (±SEM) in the feces of mice fed a HFD (from separate cages). Histogram on left shows average

across all samples collected (n = 8). Histogram on right shows differences between samples collected from dark and light (n = 4). See Figure S6A for NA

results.

(C) Average absolute quantification (±SEM) of primary, secondary, and tauro-conjugated bile acids within feces. Dashed line connects similar bile acids to allow

easy comparison across conditions. CA, cholate; CDCA, chenodeoxycholate; MCA, Muricholate (a, alpha; b, beta; g, gamma; w, omega), DCA, deoxycholate;

UDCA, ursodeoxycholate; LCA, lithocholate; T, Tauro. *p < 0.05, **p < 0.01.
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FA mice, and overall species numbers were reduced. In these

mice a-diversity did not fluctuate; rather it stayed constantly

low. Likewise, within-condition b-diversity of the gut microbiome

remained low.

We originally hypothesized that TRF in FT mice would make

the gut microbiome highly dynamic, similar to the gut micro-

biome of NA mice. However, this was not the case. Superficially,

FT and FA gut microbiomes were very similar, highlighting the

important role of diet in forming the gut microbial environment.

At the subphylum level, however, there were key differences be-

tween FT and FA gut microbiomes. In addition, FT mice had a

higher b-diversity, but not a-diversity, compared to FA mice.

These differences in microbial ecology reinforce the fact that

the gutmicrobiome of FA and FTmice are quite different in subtle

ways.

Temporal changes in the diversity are particularly important in

understanding the contribution of the gut microbiome to obesity

andmetabolic disease (Ley et al., 2005; Turnbaugh et al., 2009a).

Many have observed a decrease in a-diversity in diet-induced

obesity/FA mice compared to control/NA mice and hence have

hypothesized that increasing it can be protective against obesity

(Lozupone et al., 2012). However, our data show that a-diversity

can vary widely throughout the day in NAmice and that, when all
1014 Cell Metabolism 20, 1006–1017, December 2, 2014 ª2014 Else
time points are taken into account, there are no significant differ-

ences between any conditions that we have tested. Changes in

b-diversity, however, are significant, further showing that fluctu-

ations in the gut microbiome are important for host metabolism,

not necessarily richness of species which is affected by diet.

A key finding of the paper is that the feeding pattern affected

the composition of the luminal microflora, even when animals

were fed the same diet. Analysis of the gut microbiome of FA

and FT mice revealed differences when analyzed at the subphy-

lum level. Many of the OTUs that regained cycling or were signif-

icantly different in the FT gut microbiome (compared to the FA

one) belong to genera that have been hypothesized to play a

role in host metabolism. Lactobacillus species, which are

thought to be obesogenic (Joyce et al., 2014; Li et al., 2013;

Million et al., 2012, 2013; Parks et al., 2013; Raman et al.,

2013), were cyclical in the gut microbiome of NA and FT mice,

but not in FA mice. Compared to FA mice, FT mice had lower

levels of these species. Lactococcus are also thought to be obe-

sogenic (Million et al., 2012). FT mice had significant reduction in

Lactococcus species compared to FA mice, especially during

the light phase, suggesting that fasting may play a crucial role

in keeping these species at check. In addition, protective spe-

cies, such as those belonging to the Ruminococcacea family,
vier Inc.



Cell Metabolism

Diurnal Fluctuations of Gut Microbiome
including the genus Ocillibacter (Raman et al., 2013), were

elevated in the gut microbiome of NA and FT mice, but not in

FA mice. These results suggest that the benefits of TRF could

be due at least in part to an alteration in the gut microbiome.

Other species of gut bacteria have been hypothesized to play

a role in host metabolism. These include Bifidobacterium (Million

et al., 2012) and Akkermansia (Everard et al., 2013), both of

which are highly cyclical species. Bifidobacterium species did

not seem to be affected by the different dietary conditions

(once data were averaged over all time points). Akkermansia

seemed to thrive most in the fasting lumen of NA mice. Our find-

ings suggest that changes in these genera may not be sufficient

to improvemetabolism, since theywere not different between FA

and FT conditions.

The mechanism by which the gut microbiome affects host

metabolism is not well understood. Modification and fluctuation

of the gut microbiome do not indicate that the host metabolism

has changed, since this association may be correlative. How-

ever, our analysis of stool metabolites revealed how differences

in the gut microbiome between FA and FT mice could explain

their distinct phenotypes. For example, analysis of sugars re-

vealed high levels of xylose and galactose in the stool of FT

mice. This suggests that these sugars were more readily ab-

sorbed by the gut of FA mice than that of FT mice.

The analysis of stool bile acid also yielded interesting results,

especially given that Lactobacillus species were underrepre-

sented in the gut microbiome of FT mice. Some Lactobacillus

species produce bile acid hydrolase, which can conjugate bile

acids that are antagonists of the main ileal bile acid receptor,

the farnesoid X receptor (FXR) (Li et al., 2013). Enterohepatic

bile acid signaling mediated by FXR most directly affects the ac-

tivity of cyotchorme p450 7A1 (Cyp7a1, also known as choles-

terol 7 a-hydroxylase), which is the main enzyme for de novo

bile acid synthesis from cholesterol (Calkin and Tontonoz,

2012; Gilardi et al., 2007; Matsubara et al., 2013). This enzyme

exhibits high levels of activity in FT mice compared to FA mice

(Hatori et al., 2012), which corresponds with decreased serum

cholesterol in FT mice (Hatori et al., 2012). In the current study

we also observed low levels of serum cholesterol in FT mice (Fig-

ure 1E). In addition, bile acid signaling through FXR,which is high-

ly circadian, canmodulate glucose homeostasis and lipid/triglyc-

eridemetabolism (Calkin and Tontonoz, 2012; Gilardi et al., 2007;

Matsubara et al., 2013; Zarrinpar and Loomba, 2012; Zhang et al.,

2011). Hence, TRF may have beneficial effects by restoring the

cyclical fluctuation of gut microflora, which in turn would alter

bile acids signaling to affect metabolism. However, additional ex-

periments using selective FXR agonists/antagonists or FXR-

related knockout mice will be needed to prove this relationship.

The gut microbiome is essential for normal gut homeostasis,

not only for its immunological and metabolic roles but also in

host circadian gene expression (Mukherji et al., 2013). Antibi-

otic-induced microbiota depletion eliminates gut circadian

gene expression and perturbs IEC homeostasis. It is unlikely

that a static gut microbiome could drive cyclical gene expression

of the gut. Cyclical variation in the gut microbiome may also ac-

count for large variation in human microbiome results observed

within and between studies (Duncan et al., 2008; Schwiertz

et al., 2010). The realization that the gut microbiome has fine-

scale cyclical variation in many species indicates that the time
Cell Metab
of day should be controlled for when characterizing the gut mi-

crobiome. A better record of animal diet, feeding patterns, and

time of specimen collection is necessary to interpret studies of

the gut microbiome and to understand the host-microbiome

relationship.

EXPERIMENTAL PROCEDURES

Animals

All animal experiments were carried out in accordance with the guidelines of

the Animal Care and Use Committee of the Salk Institute. Eight-week-old

male C57BL/6J mice (Jackson Laboratory) were group housed (three mice

per cage) under a 12 hr light:12 hr dark schedule with ad libitum access to

normal chow for 2 weeks to adapt to the housing conditions before being

randomly assigned to one of the feeding conditions (see below).

Feeding Schedule and Diets

NA mice were fed a normal chow diet (LabDiet 5001, 29% protein, 13% fat,

58% carbohydrates) with unrestricted (ad libitum) access. FA and FT mice

received HFD (LabDiet 58Y1; 18% protein, 61% fat, 21% carbohydrates)

with either ad libitum access (FA mice) or during an 8 hr window between

ZT13 and ZT21 (TRF-FT mice; Figure 1A). Access to food was controlled

by transferring mice daily between cages with food and water to cages

that had only water. Animal weights and food intake were measured weekly.

Animals were maintained on assigned diets and feeding paradigms for

8 weeks.

Metabolic Measurements

Glucose tolerance tests (six mice per group) were performed 7 weeks after

initiation of the feeding paradigm. Animals were fasted for 16 hr on paper

bedding before the test. Blood glucose levels were measured using One

Touch Ultra glucometer prior to injection of glucose (1 g/kg intraperitonally)

and every 30 min after injection. Serum from fasting animals (six per condi-

tion) at 8 weeks was used to measure ALT, cholesterol, and triglycerides

using Thermo Scientific Infinity Reagents according to the manufacturer’s

instructions.

Metagenomic DNA Extraction and 16S rRNA Sequencing

Three mice (from different cages) from each feeding condition were sacrificed

every 4 hr over a 24 hr period, and each individual’s cecum was flash frozen.

Individual ceca were then resuspended in PBS and digested with RNase A and

Proteinase K at 55�C for 1 hr before lysis with a bead beater. DNA from the

lysate was extracted using Phenol/Chloroform/Isoamyl alcohol, precipitated,

and washed with ethanol. Resulting DNA was resuspended in TE. 16S rRNA

gene sequence tags, corresponding to the hypervariable V1–V3 region,

were generated using the 454 pyrosequencing platform. These sequences

were used to generate microbial community profiles using OTU-based

classification.

Sequence Analysis

We used UPARSE (Edgar, 2013) to process the raw data (including the QC

step) and to compute OTUs. We computed 97% identity OTUs and, using

representative OTU sequences, classified them using Ribosomal Database

Project classifiers. A threshold of R80% bootstrap value was used to assign

a sequence to a taxonomic group. Since so many identified species were in

the Firmicutes phylum, another analysis searching for the closest neighbor

to the OTU sequence (the match had to be at least 97% identity) was per-

formed using the CD-HIT program (Wu et al., 2011b). We used quantitative

PCR of selected taxa to confirm results.

Determining Cyclical Fluctuations

For each OTU, the percent of total reads was calculated for each mouse and

then averaged per time point per condition (three mice). The data from six time

points were analyzed by JTK-Cycler to detect cyclical variation (Hughes et al.,

2010). Significance was determined if the permutation-based p values (i.e.,

adjusted p value) and the Benjamini-Hochberg q values (BH.Q) were both

less than 0.05. These strict criteria were used to reduce false positive rates.
olism 20, 1006–1017, December 2, 2014 ª2014 Elsevier Inc. 1015
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ANOVA and t tests were used in parallel to detect overall changes in the micro-

biome or transcripts between feeding paradigms.

Diversity Analysis

All diversity analyses were performed using the vegan package (Oksanen

et al., 2013) in R for Windows (The Comprehensive R Archive Network). For

a-diversity, a Shannon index was initially calculated, which was then con-

verted to a Shannon effective species (Jost, 2006) for easier comparisons be-

tween different populations. ANOVA was used to compare the three groups.

For b-diversity, the Jaccard dissimilarity index was used to measure dissimi-

larity between gut microbiomes of samples within each condition (but different

time points) and between each condition (Koleff et al., 2003). Rarefaction and

rank-abundance plots were measured by taking diversity of average reads for

each condition, unless otherwise stated.

Stool Metabolite Measurements

Fresh stool was collected from the nighttime feeding and daytime fasting

cages and flash frozen. The stool was then powderized in liquid nitrogen

before further analysis. Relative quantification of xylose and galactose was

performed using Metabolon, Inc. (Evans et al., 2009). Bile acid quantification

was performed by the metabolomics core services at the University of Michi-

gan. Bile acids were extracted from feces (50 mg) using a two-step solvent

extraction. Supernatants were combined, dried, and resuspended for LC-

MS separation by RPLC. Results were quantified using standard curves of

authentic standards (Griffiths and Sjövall, 2010). For both analyses, data

were averaged from four samples obtained from different light/dark cages

from each condition.

Statistical Analysis

Unless otherwise stated, all statistical analyses among the three groups were

nonparametric, one-way ANOVAs (Kruskal-Wallis test) with Dunn’s post test.

All comparisons between two groups were two-tailed nonparametric t tests

(Mann-Whitney U test).
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